Few-Cycle Pulses Amplification for Attosecond Science Applications: Modeling and Experiments
Total Page:16
File Type:pdf, Size:1020Kb
FEW-CYCLE PULSES AMPLIFICATION FOR ATTOSECOND SCIENCE APPLICATIONS: MODELING AND EXPERIMENTS by MICHAËL HEMMER M.S. Engineering Ecole Nationale Supérieure de Physique de Marseille, 2005 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics and Photonics at the University of Central Florida Orlando, Florida Spring Term 2011 Major professor: Martin Richardson © 2011 Michaël Hemmer ii ABSTRACT The emergence of mode-locked oscillators providing pulses with durations as short as a few electric-field cycles in the near infra-red has paved the way toward electric-field sensitive physics experiments. In addition, the control of the relative phase between the carrier and the pulse envelope, developed in the early 2000’s and rewarded by a Nobel price in 2005, now provides unprecedented control over the pulse behaviour. The amplification of such pulses to the millijoule level has been an on-going task in a few world-class laboratories and has triggered the dawn of attoscience, the science of events happening on an attosecond timescale. This work describes the theoretical aspects, modeling and experimental implementation of HERACLES, the Laser Plasma Laboratory optical parametric chirped pulse amplifier (OPCPA) designed to deliver amplified carrier-envelope phase stabilized 8-fs pulses with energy beyond 1 mJ at repetition rates up to 10 kHz at 800 nm central wavelength. The design of the hybrid fiber/solid-state amplifier line delivering 85-ps pulses with energy up to 10 mJ at repetition rates in the multi-kHz regime tailored for pumping the optical parametric amplifier stages is presented. The novel stretcher/compressor design of HERACLES, suitable for handling optical pulses with spectra exceeding 300 nm of bandwidth with unprecedented flexibility, is fully modeled and also presented in the frame of this thesis. Finally, a 3D model of the multi- stage non-collinear optical parametric amplifier is also reported. The current and foreseen overall performances of HERACLES are presented. This facility is designed to enable attosecond physics experiments, high-harmonic generation and physics of plasma studies. iii To my family... iv TABLE OF CONTENTS LIST OF FIGURES .................................................................................................................... viii LIST OF TABLES...................................................................................................................... xvi LIST OF ABBREVIATIONS .................................................................................................. xviii 1 INTRODUCTION.................................................................................................................. 1 1.1 Attoscience, a new field of physics ........................................................................1 1.2 Motivation of the thesis...........................................................................................2 1.3 Focus and objectives of the thesis ..........................................................................3 1.4 Thesis outline ...........................................................................................................4 2 FROM CPA TO OPCPA: THE PLACE OF HERACLES IN 30 YEARS OF LASER DEVELOPMENT ........................................................................................................................... 6 2.1 Chirped-Pulse Amplification: amplification to high peak powers .......................6 2.1.1 Providing positive and negative chirp: prerequisite to CPA techniques ........6 2.1.2 Invention of CPA and consequences ................................................................9 2.1.3 The limits of CPA technologies ......................................................................12 2.2 Optical Parametric Chirped-Pulse Amplification ................................................14 2.3 The place of HERACLES, OPCPA system at LPL ............................................15 3 OPTICAL PARAMETRIC AMPLIFIER PUMP BEAM GENERATION: MODEL AND SIMULATIONS ........................................................................................................................... 17 3.1 Requirements on HERACLES pump beam parameters .....................................17 3.2 Multi-stage architecture of the HERACLES pump beam amplifier ..................19 3.3 Physical properties of Neodymum doped laser media ........................................20 3.4 Regenerative amplifier modeling and parametric study .....................................21 3.4.1 Principle of operation ......................................................................................22 3.4.2 Regenerative amplifier model .........................................................................23 3.4.3 Parametric investigation of regenerative amplifier performances ................24 3.4.4 Cavity design and stability ..............................................................................39 3.4.5 Intra-cavity volume Bragg grating .................................................................42 3.5 Post-amplifier modeling and parametric study ....................................................47 3.5.1 Post-amplifier model .......................................................................................47 3.5.2 Parametric investigation of post-amplifier performances .............................47 3.6 Multi-pass booster amplifier .................................................................................50 v 3.6.1 Post-amplifier model .......................................................................................50 3.6.2 Parametric investigation of booster amplifier performances ........................50 3.6.3 Depolarization effects......................................................................................54 3.6.4 Multi-pass booster amplifier layout model ....................................................57 3.7 Conclusion and recommendation for HERACLES amplifier chain ..................59 4 ULTRA-BROADBAND PULSE STRETCHING AND COMPRESSING: MODELING AND IMPLEMENTATION ........................................................................................................ 61 4.1 Limitations of traditional stretcher/compressor assemblies................................61 4.2 Strategy for efficient pulse compression ..............................................................62 4.3 Traditional pulse chirping techniques: model......................................................63 4.3.1 Spectral phase: definition and convention .....................................................64 4.3.2 Material dispersion and angular dispersion ...................................................66 4.3.3 Brewster prism pair .........................................................................................70 4.3.4 Treacy grating pair...........................................................................................76 4.4 Solutions for efficient stretching and compressing of ultra-broadband pulses: model and prospects...........................................................................................................................80 4.4.1 Grism pairs semi-analytical model .................................................................83 4.4.2 Acousto-optic programmable dispersion filter ..............................................94 4.4.3 Chirped mirrors ................................................................................................97 4.5 The HERACLES stretcher compressor assembly ............................................ 104 4.5.1 Hybrid grism-grating stretcher..................................................................... 104 4.5.2 Bulk glass pulse compression ...................................................................... 113 5 NON-COLLINEAR OPTICAL PARAMETRIC AMPLIFICATION: THEORY AND SIMULATIONS .........................................................................................................................123 5.1 Theory of optical parametric amplification ...................................................... 123 5.1.1 Nonlinear polarization and introduction of coupled wave-equations ....... 124 5.1.2 Analytical solutions of the coupled wave equations .................................. 127 5.2 Broadband phase-matching................................................................................ 134 5.2.1 Broadband phase-matching: conceptual approach ..................................... 134 5.2.2 Broadband phase-matching: mathematical description.............................. 137 5.3 Phase evolution of the optical parametric process ........................................... 140 5.4 Numerical modeling of a broadband non-collinear optical parametric amplifier142 5.4.1 Broadband phase-matching and non-collinear geometry ........................... 143 5.4.2 Introduction of the model ............................................................................. 148 vi 5.5 Beyond the phase-matching condition: two-color pumping ............................ 158 5.6 Conclusions for HERACLES optical parametric amplifier stages ................. 160 6 AMPLIFIER SYSTEM PERFORMANCES ...................................................................162 6.1 Ti:Sapphire oscillator front-end......................................................................... 162 6.1.1 Layout and performances ............................................................................