Modelocking of a Thin-Disk Laser with the Frequency-Doubling Nonlinear-Mirror Technique

Total Page:16

File Type:pdf, Size:1020Kb

Modelocking of a Thin-Disk Laser with the Frequency-Doubling Nonlinear-Mirror Technique Vol. 25, No. 19 | 18 Sep 2017 | OPTICS EXPRESS 23254 Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique * F. SALTARELLI, A. DIEBOLD, I. J. GRAUMANN, C. R. PHILLIPS, AND U. KELLER Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland *[email protected] Abstract: We demonstrate a frequency-doubling nonlinear-mirror (NLM) modelocked thin- disk laser. This modelocking technique, composed of an intracavity second harmonic crystal in combination with a dichroic output coupler, offers robust operation decoupled from cavity stability (as in semiconductor saturable absorber mirror (SESAM) modelocking) combined with an ultrafast saturable loss and high modulation depth (as in Kerr-lens modelocking (KLM)). With our NLM diode-pumped Yb:YAG thin-disk laser we achieve 21 W of average power at 323-fs pulse duration, which is an order of magnitude shorter than the previously obtained duration with the same technique in bulk lasers. Using these first results, we present a theoretical model for the NLM technique, which accurately predicts its loss modulation properties and the shortest achievable pulse duration without relying on any fitting parameters. Based on this simulation, we expect that the NLM technique will enable thin-disk lasers with average power of more than 100 W, with potentially sub-200 fs pulses. This could potentially solve the pulse duration limitations with SESAM modelocked Yb:YAG thin-disk lasers without imposing strong cavity stability constraints such as in KLM. © 2017 Optical Society of America OCIS codes: (140.0140) Lasers and laser optics; (140.4050) Mode-locked lasers; (140.7090) Ultrafast lasers; (190.7110) Ultrafast nonlinear optics. References and links 1. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009). 2. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008). 3. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017). 4. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016). 5. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010). 6. F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015). 7. M. Gaponenko, F. Labaye, V. Wittwer, C. Paradis, N. Modsching, L. Merceron, A. Diebold, F. Emaury, I. Graumann, C. Phillips, C. J. Saraceno, C. Kränkel, U. Keller, and T. Sudmeyer, “Compact Megahertz Coherent XUV Generation by HHG inside an Ultrafast Thin Disk Laser,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper NTh3A.1. 8. S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015). 9. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012). 10. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin- disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014). #303089 https://doi.org/10.1364/OE.25.023254 Journal © 2017 Received 24 Jul 2017; revised 25 Aug 2017; accepted 25 Aug 2017; published 13 Sep 2017 Vol. 25, No. 19 | 18 Sep 2017 | OPTICS EXPRESS 23255 11. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode- locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013). 12. C. Schriber, L. Merceron, A. Diebold, F. Emaury, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Pushing SESAM modelocked thin-disk lasers to shortest pulse durations,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AF1A.4. 13. I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted. 14. C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016). 15. A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016). 16. J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014). 17. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode- locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016). 18. J. Zhang, J. Brons, M. Seidel, D. Bauer, D. Sutter, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, “Generation of 49-fs pulses directly from distributed Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.7. 19. C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Opt. Express 25(13), 14918–14925 (2017). 20. B. Borchers, C. Schaefer, C. Fries, M. Larionov, and R. Knappe, “Nonlinear Polarization Rotation Mode-locking via Phase-mismatched Type I SHG of a Thin Disk Femtosecond Laser,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.9. 21. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988). 22. G. M. Thomas, T. Omatsu, and M. J. Damzen, “High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror,” Appl. Phys. B 108(1), 125–128 (2012). 23. G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994). 24. K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β‐BaB2O4 crystal,” Appl. Phys. Lett. 58(20), 2203–2204 (1991). 25. G. M. Thomas and M. J. Damzen, “30W Nd:GdVO4 oscillator modelocked with nonlinear mirror,” in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), 2011), pp. 1. 26. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20(17), 1785–1787 (1995). 27. H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18(6), 5754–5762 (2010). 28. K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group- velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991). 29. I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994). 30. O. V. Chekhlov and V. A. Zaporozhchenko, “Mapping of the second-harmonic nonlinear mirror characteristics for laser mode locking and pulse shortening,” J. Opt. Soc. Am. B 15(1), 210–215 (1998). 31. A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011). 32. R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984). 33. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996). 34. K. Kato, “Second-harmonic generation to 2048 Å in b-BaB2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986). 35. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990). 36. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt.
Recommended publications
  • Welding with High Power Diode Lasers
    White Paper Welding with High Power Diode Lasers by Keith Parker, Sr. Business Development Manager – Direct Diode & Fiber Laser Systems Laser welding with CO2, fiber and various types of solid- minimize grain growth in high strength, low alloy steels. state lasers is a well established process currently utilized in Even though no filler material is typically used for keyhole a wide range of industries and applications. However, recent welding, the high temperatures of keyhole welding can technological developments in high power diode laser vaporize volatile materials, producing a different technology have expanded the capabilities of laser welding, composition in the fusion zone than in the base metal. Also, as well as changed its cost characteristics. As a result, diode with hardenable steels, the rapid cooling generates fully lasers are poised to replace traditional laser sources for some martensitic fusion zones and hardened heat affected zones. applications and also expand laser welding implementation into entirely new areas. In contrast, if the threshold laser power required to initiate a keyhole is not reached, then only surface melting occurs. This article provides an introduction to high-power diode Because laser energy is absorbed almost entirely at the laser technology and its use in welding. In particular, it surface and heat transfer into the bulk material occurs by compares the capabilities and characteristics of diode lasers conduction, this is called conduction mode welding. with other welding laser technologies, reviews the Conduction mode welds are typically shallow and most often applications best suited for diode welding and provides some have a bowl-shaped profile. The heat affected zone is larger guidance on what materials are compatible with this process.
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • A Light Over All Processes Cnc-Powered Laser Innovation Laser Use in Manufacturing Grows Welding Applications Expand
    LASER FOCUS — A SPECIAL SECTION I R O M G M D of esy urt Co LASERS TODAY: A LIGHT OVER ALL PROCESSES CNC-POWERED LASER INNOVATION LASER USE IN MANUFACTURING GROWS WELDING APPLICATIONS EXPAND A laser cutting head, mounted to the end effector of a robot, is robust and compact to withstand the challenging environment while having internal sensors and mechanisms that provide accuracy and feature capabilities that are beyond the normal capacity of the robot. Courtesy of Laser Mechanisms Inc. LASERS: A LIGHT OVER ALL PROCESSES AND MARKETS SME’s Industrial Laser Community Geoff Shannon, PhD, Laser Technology Manager—Miyachi America, and Mark Taggart, President—Laser Mechanisms Inc. s we approach the 50-year anniversary of laser use in manu- facturing, the use of lasers to make things is accelerating and expanding. Laser applications that just a few years ago were thought to be impossible or too expensive are Abecoming feasible and cost effective. Lasers, in fact, touch all of our lives on a daily basis. With great preci- sion and efficiency, lasers: • cut the glass for our smartphone and tablet screens; • weld the hard disk drives in our PCs and laptops; • cut airbag material and weld airbag detonators in our cars; • drill the fuel injectors in our engines to increase fuel economy; and • cut medical stents that enhance our lives. MfgEngMedia.com LF3 What’s more, remarkable, fast-paced advances in specialized optics and high-speed beam delivery computers, sensor technologies, and wireless com- systems, and non-metals welding and processing. munications are creating increasingly sophisticated Advancements in the field of laser additive manufac- tools such as process monitors and system diagnostics turing have also caught the attention of the public that are enhancing the performance, reliability and and the media.
    [Show full text]
  • Flow Diagnostics Produced by Selective Laser Melting of Cutting Nozzles
    Lasers in Manufacturing Conference 2015 Flow diagnostics produced by selective laser melting of cutting nozzles S.Ulricha, S.Lorenza S. Jahna, S.Sändiga, B.Fleckb aGünter-Köhler-Institut für Fügetechnik und Werkstoffprüfung GmbH bErnst-Abbe-Hochschule Jena Abstract The increasing spread of laser technology in materials processing leads inter alia increasingly individual solution strategies in order to cope with the growing demands on the process control. The focus of this work is the fluidic analysis of the cutting nozzles, which were usually produced either by selective laser melting or conventional methods. The Schlieren measurement was utilized in order to visualize flows. Through the adjustment of optical components, the Schlieren-Aufnahmegerät 80 was coupled with a high speed camera. Based on these measurement results, the influence of manufacturing technology has been evaluated on the flow behaviour. With the help of cutting tests a direct proof of the achievable quality of the cutting edge has been evaluated. The results from both research methods provide a statement on the quality of the gas stream and the achievable cutting quality of manufacturing technology. Keywords: laser cutting, selektiv laser melting, nozzle, flow visualization 1. Introduction Nowadays, the decisive factors for financial success are on the one hand innovative products, and on the other hand the acquisition of knowledge through research and development. In materials processing, the application of lasers in technological fields like cutting and welding, enables shorter lead times. The understanding of the process plays a crucial role for the quality of the component. Regarding cutting, the quality of the cut edge and the dimensional accuracy is affected by many parameters.
    [Show full text]
  • Thin Disk Laser
    History, principles and prospects of thin-disk lasers Jochen Speiser German Aerospace Center Institute of Technical Physics 27.08.2014 DLR German Aerospace Center • Research Institution • Space Agency • Project Management Agency DLR.de • Chart 3 > Standard presentation > April 2014 Locations and employees Approx. 8000 employees across 33 institutes and facilities at Stade Hamburg 16 sites. Neustrelitz Bremen Trauen Berlin Offices in Brussels, Paris, Braunschweig Tokyo and Washington. Goettingen Juelich Cologne Bonn The Institute of Technical Physics works in selected fields of optics, lasers and laser systems. The activities comprise investigations Lampoldshausen for aerospace as well as contributions to security Stuttgart and defense related topics. Augsburg Oberpfaffenhofen • 1993 Invention of Thin Disk laser, Weilheim together with University of Stuttgart (IFSW) DLR.de • Chart 4 > History, principles and prospects of thin-disk lasers > Jochen Speiser> 27.08.2014 Outline • Thin Disk laser concept & historical development • Technical realization and scaling (mostly cw) • Pulsed Thin Disk lasers • High energy / high power concepts • Thin disk modeling / challenges • Scaling limits • Speculative trends DLR.de • Chart 5 > History, principles and prospects of thin-disk lasers > Jochen Speiser> 27.08.2014 Thin Disk laser concept • Yb:YAG – small quantum defect, long lifetime, broad absorption, but thermal population of lower laser level r e • Challenge: Efficient heat removal at high power s a densities to operate Yb:YAG without cryo- L cooling • Solution: thin layer of active material, one face cooled Thin Disk Thin Disk Laser • A. Giesen et al., Scalable Concept for Diode- l t a Pumped High-Power Solid-State Lasers, a v e o Appl. Physics B 58 (1994), p.
    [Show full text]
  • Ytterbium-Doped Fiber-Seeded Thin-Disk Master Oscillator Power Amplifier Laser System
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2013 Ytterbium-doped Fiber-seeded Thin-disk Master Oscillator Power Amplifier Laser System Christina Willis-Ott University of Central Florida Part of the Electromagnetics and Photonics Commons, and the Optics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Willis-Ott, Christina, "Ytterbium-doped Fiber-seeded Thin-disk Master Oscillator Power Amplifier Laser System" (2013). Electronic Theses and Dissertations, 2004-2019. 2991. https://stars.library.ucf.edu/etd/2991 YTTERBIUM-DOPED FIBER-SEEDED THIN-DISK MASTER OSCILLATOR POWER AMPLIFIER LASER SYSTEM by CHRISTINA C. C. WILLIS B.A. Wellesley College, 2006 M.S. University of Central Florida, 2009 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics and Photonics at the University of Central Florida Orlando, Florida Summer Term 2013 Major Professor: Martin C. Richardson © 2013 Christina Willis ii ABSTRACT Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies.
    [Show full text]
  • Fiber Laser Chirped Pulse Amplifier
    Fiber Laser Chirped Pulse Amplifier Overview Fiber lasers are known to offer advantages in maintaining stable operation over years, low total cost of ownership, and predictable operation in a small package. Few mirrors need aligning. At high power, the fiber laser provides simpler heat removal of high powers in a long thin fiber. The simplicity of a fiber removes the need for water cooling, and usually air cooling or conduction cooling is sufficient. The fiber laser can usually be more compact, important for embedded applications. For these and other reasons, industrial and medical laser sources have been migrating to fiber lasers where possible. Ultrashort pulses are a new technology with many applications from sampling to non-thermal machining and surgery. Fiber lasers provide a stable and reliable mode-locked platform for generation of these pulses. These ultrashort pulse fiber lasers are the primary expertise of Calmar Laser. Rather than higher average power, higher energy pulses are sometimes required for applications such as non-thermal machining or surgery. But the small optical mode diameter in a fiber limits short pulse energy throughput due to nonlinear optical mechanisms. The Fiber Laser Chirped Pulse Amplifier (FLCPA) is an excellent method for increasing the energy output of a fiber to many µJ and above. Ultrafast fiber lasers with higher energy pulses and small diameter fibers are dominated by nonlinear optical effects, unlike free-space optics with very much large diameter beams. The first nonlinear problem is self phase modulation where the light power itself will change the index of refraction, disrupting the pulse form.
    [Show full text]
  • Micro-Hole Drilling on Glass Substrates—A Review
    micromachines Review Micro-Hole Drilling on Glass Substrates—A Review Lucas A. Hof 1 and Jana Abou Ziki 2,* 1 Department of Mechanical & Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC H3G 1M8, Canada; [email protected] 2 Bharti School of Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada * Correspondence: [email protected]; Tel.: +1-705-675-1151 (ext. 2296) Academic Editors: Hongrui Jiang and Nam-Trung Nguyen Received: 14 November 2016; Accepted: 3 February 2017; Published: 13 February 2017 Abstract: Glass micromachining is currently becoming essential for the fabrication of micro-devices, including micro- optical-electro-mechanical-systems (MOEMS), miniaturized total analysis systems (µTAS) and microfluidic devices for biosensing. Moreover, glass is radio frequency (RF) transparent, making it an excellent material for sensor and energy transmission devices. Advancements are constantly being made in this field, yet machining smooth through-glass vias (TGVs) with high aspect ratio remains challenging due to poor glass machinability. As TGVs are required for several micro-devices, intensive research is being carried out on numerous glass micromachining technologies. This paper reviews established and emerging technologies for glass micro-hole drilling, describing their principles of operation and characteristics, and their advantages and disadvantages. These technologies are sorted into four machining categories: mechanical, thermal, chemical, and hybrid machining (which combines several machining methods). Achieved features by these methods are summarized in a table and presented in two graphs. We believe that this paper will be a valuable resource for researchers working in the field of glass micromachining as it provides a comprehensive review of the different glass micromachining technologies.
    [Show full text]
  • Evaluation of Preparation and Combustion Rig Tests of an Effusive Cooled Sic/Sicn Panel
    Received: 29 November 2019 | Revised: 3 February 2020 | Accepted: 3 March 2020 DOI: 10.1111/ijac.13501 SPECIAL ISSUE ARTICLE Evaluation of preparation and combustion rig tests of an effusive cooled SiC/SiCN panel Sandrine Hönig1 | Fabia Süß1 | Neraj Jain1 | Raouf Jemmali1 | Thomas Behrendt2 | Bernd Mainzer3 | Dietmar Koch4 1German Aerospace Center (DLR), Institute of Structures and Design (BT), Stuttgart, Abstract Germany SiC/SiCN ceramic matrix composites (CMCs) are promising candidates for com- 2German Aerospace Center (DLR), Institute ponents of aero-engines. To evaluate the properties of these CMCs under realistic of Propulsion Technology (AT), Cologne, conditions, a quasi-flat panel with effusion cooling holes was investigated in a high Germany 3 pressure combustor rig. A Tyranno SA3 fabric-based SiC/SiCN composite with high Morgan Advanced Materials Haldenwanger GmbH, Waldkraiburg, strength and strain to failure was manufactured via polymer infiltration and pyrolysis Germany process. Due to its weak matrix no fiber coating was necessary for damage tolerant 4 Chair of Materials Engineering, University behavior. The cooling holes in the panel were introduced via laser drilling. An outer of Augsburg, Augsburg, Germany coating of CVD-based SiC was finally applied for enhanced oxidation resistance. Correspondence The specimen was tested in the combustor rig and the cooling effectiveness was Sandrine Hönig, German Aerospace Center evaluated. The microstructure of laser machined holes was studied via microscopy (DLR), Institute of Structures and Design (BT), Stuttgart, Germany. and energy-dispersive X-ray spectroscopy. The macrostructure was investigated via Email: [email protected] computing tomography scans before and after the combustor test. Material perfor- mances at higher temperatures were estimated via a material performance index.
    [Show full text]
  • Catheter Laser Drill
    Catheter Laser Drill Project Leader: Brady Haug Department: Industrial Technology College: Orfalea College of Business Date: May 30, 2010 CATHETER LASER DRILL ii ABSTRACT The project that I have undertaken is to improve upon an existing machine and process at Applied Medical, a medical device company. The machine is used to drill four holes into the body of a catheter. The holes are located on a linear axis, rotated 90 degrees apart from each other. Currently, the machine utilizes a traditional drill bit to create the four holes. This creates burrs along the holes, which increases the manufacturing time because a worker must remove them. The project calls for the use of a laser to replace the drill bit. The machine designed through this project effectively decreases the occurrence of burrs by vaporizing the excise material, thus decreasing production time. Each catheter will be manually loaded onto the motor shaft, which will then hold and rotate the catheter through the duration of the drilling procedure. This report documents the design of the machine and the selection of its components. CATHETER LASER DRILL iii ACKNOWLEDGEMENTS Applied Medical is an innovative medical device manufacturer. The company is passionate about its products and passionate about the community. The company accepts sixty students into the internship program each summer. I am fortunate to have been selected for two consecutive summers. Last summer I was an intern for the Tooling and Automation department. My supervisor from that department agreed to act as my Technical Supervisor for my Senior Project. In addition to a sincere thanks to Applied Medical, I extend immense appreciation to my Technical Supervisor, Arpad Szabo, for giving me a project and diligently helping me along the way.
    [Show full text]
  • 2 Μm Ho:YAG Thin Disk Laser
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications 2 µm Ho:YAG Thin Disk Laser G. Renz, P. Mahnke, J. Speiser, and A. Giesen Institute of Technical Physics, German Aerospace Center, Pfaffenwaldring 38, 70569 Stuttgart, Germany e-mail: [email protected] Abstract: A Thulium fiber laser pumped Ho:YAG thin disk laser with 15W (cw) or several mJ (pulsed) operation will be presented. Additionally, a narrow (<0.5nm), tunable (30nm) cw operation near 2.09 µm, will be shown. © 2011 Optical Society of America OTIC codes: (140.3460) Lasers, (140.3070) Infrared and far-infrared lasers. 1. Introduction Continues-wave 2 µm laser show applications in the ‘eye-safe’ wavelength range, e.g., laser material processing, laser welding of transparent plastic materials as well as laser surgery or therapy. Furthermore, a pulsed-mode operation of a 2 µm laser opens up the mid-infrared region via pumping of an optical parametric oscillator based on nonlinear crystals like zinc germanium phosphide (ZnGeP2) or orientation- patterned GaAs to efficiently produce radiation in the 3 µm – 12 µm spectral range. For gas monitoring or remote sensing, the tunable 2 µm laser can be operated in the wavelength range of CO2 molecules to detect footprints of their vibrational bands [1]. The larger emission cross section of the Ho3+-system at 2.09 µm compared to Tm3+-systems makes the Ho:YAG thin disk laser concept with its inherent low gain per pass in a multiple pump pass concept [2] 5 attractive for the generation of high power in cw- or pulsed-mode operation.
    [Show full text]
  • Bessel and Annular Beams for Materials Processing
    LASER & PHOTONICS Laser Photonics Rev. 6, No. 5, 607–621 (2012) / DOI 10.1002/lpor.201100031 REVIEWS Abstract Non-Gaussian beam profiles such as Bessel or an- nular beams enable novel approaches to modifying materials through laser-based processing. In this review paper, proper- ties, generation methods and emerging applications for non- conventional beam shapes are discussed, including Bessel, an- nular, and vortex beams. These intensity profiles have important implications in a number of technologically relevant areas includ- ing deep-hole drilling, photopolymerization and nanopatterning, and introduce a new dimension for materials optimization and fundamental studies of laser-matter interactions. ARTICLE REVIEW Bessel and annular beams for materials processing Marti Duocastella and Craig B. Arnold* 1. Introduction laser pulse duration can have a significant effect on the ma- terial removal dynamics. This leads to a more rapid ejection 1.1. General laser processing of material with a smaller heat affected zone as the temporal pulse length is shortened [12]. The control and influence of other laser parameters is Lasers have become indispensible for materials processing less common yet these can also be important factors in ma- in scientific and industrial applications. They offer a highly terials processing. One of these is the laser beam shape, directional and localized source of energy, which facilitates defined as the irradiance distribution of the light when it materials modifications at precise locations [1]. Modern arrives at the material of interest [13]. Although some laser laser systems are also flexible, in the sense that it is relatively systems emit a multimode beam with a complex intensity easy to adapt parameters such as the beam size or the beam distribution, most commercial lasers provide either a Gaus- energy to specific requirements, and systems can be scaled sian intensity profile (Fig.
    [Show full text]