Modelocking of a Thin-Disk Laser with the Frequency-Doubling Nonlinear-Mirror Technique
Total Page:16
File Type:pdf, Size:1020Kb
Vol. 25, No. 19 | 18 Sep 2017 | OPTICS EXPRESS 23254 Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique * F. SALTARELLI, A. DIEBOLD, I. J. GRAUMANN, C. R. PHILLIPS, AND U. KELLER Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland *[email protected] Abstract: We demonstrate a frequency-doubling nonlinear-mirror (NLM) modelocked thin- disk laser. This modelocking technique, composed of an intracavity second harmonic crystal in combination with a dichroic output coupler, offers robust operation decoupled from cavity stability (as in semiconductor saturable absorber mirror (SESAM) modelocking) combined with an ultrafast saturable loss and high modulation depth (as in Kerr-lens modelocking (KLM)). With our NLM diode-pumped Yb:YAG thin-disk laser we achieve 21 W of average power at 323-fs pulse duration, which is an order of magnitude shorter than the previously obtained duration with the same technique in bulk lasers. Using these first results, we present a theoretical model for the NLM technique, which accurately predicts its loss modulation properties and the shortest achievable pulse duration without relying on any fitting parameters. Based on this simulation, we expect that the NLM technique will enable thin-disk lasers with average power of more than 100 W, with potentially sub-200 fs pulses. This could potentially solve the pulse duration limitations with SESAM modelocked Yb:YAG thin-disk lasers without imposing strong cavity stability constraints such as in KLM. © 2017 Optical Society of America OCIS codes: (140.0140) Lasers and laser optics; (140.4050) Mode-locked lasers; (140.7090) Ultrafast lasers; (190.7110) Ultrafast nonlinear optics. References and links 1. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009). 2. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008). 3. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017). 4. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016). 5. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010). 6. F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015). 7. M. Gaponenko, F. Labaye, V. Wittwer, C. Paradis, N. Modsching, L. Merceron, A. Diebold, F. Emaury, I. Graumann, C. Phillips, C. J. Saraceno, C. Kränkel, U. Keller, and T. Sudmeyer, “Compact Megahertz Coherent XUV Generation by HHG inside an Ultrafast Thin Disk Laser,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper NTh3A.1. 8. S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015). 9. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012). 10. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin- disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014). #303089 https://doi.org/10.1364/OE.25.023254 Journal © 2017 Received 24 Jul 2017; revised 25 Aug 2017; accepted 25 Aug 2017; published 13 Sep 2017 Vol. 25, No. 19 | 18 Sep 2017 | OPTICS EXPRESS 23255 11. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode- locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013). 12. C. Schriber, L. Merceron, A. Diebold, F. Emaury, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Pushing SESAM modelocked thin-disk lasers to shortest pulse durations,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AF1A.4. 13. I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted. 14. C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016). 15. A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016). 16. J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014). 17. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode- locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016). 18. J. Zhang, J. Brons, M. Seidel, D. Bauer, D. Sutter, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, “Generation of 49-fs pulses directly from distributed Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.7. 19. C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Opt. Express 25(13), 14918–14925 (2017). 20. B. Borchers, C. Schaefer, C. Fries, M. Larionov, and R. Knappe, “Nonlinear Polarization Rotation Mode-locking via Phase-mismatched Type I SHG of a Thin Disk Femtosecond Laser,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.9. 21. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988). 22. G. M. Thomas, T. Omatsu, and M. J. Damzen, “High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror,” Appl. Phys. B 108(1), 125–128 (2012). 23. G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994). 24. K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β‐BaB2O4 crystal,” Appl. Phys. Lett. 58(20), 2203–2204 (1991). 25. G. M. Thomas and M. J. Damzen, “30W Nd:GdVO4 oscillator modelocked with nonlinear mirror,” in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), 2011), pp. 1. 26. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20(17), 1785–1787 (1995). 27. H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18(6), 5754–5762 (2010). 28. K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group- velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991). 29. I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994). 30. O. V. Chekhlov and V. A. Zaporozhchenko, “Mapping of the second-harmonic nonlinear mirror characteristics for laser mode locking and pulse shortening,” J. Opt. Soc. Am. B 15(1), 210–215 (1998). 31. A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011). 32. R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984). 33. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996). 34. K. Kato, “Second-harmonic generation to 2048 Å in b-BaB2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986). 35. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990). 36. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt.