World Bank Document
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Making the State on the Sino-Tibetan Frontier: Chinese Expansion and Local Power in Batang, 1842-1939
Making the State on the Sino-Tibetan Frontier: Chinese Expansion and Local Power in Batang, 1842-1939 William M. Coleman, IV Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2014 © 2013 William M. Coleman, IV All rights reserved Abstract Making the State on the Sino-Tibetan Frontier: Chinese Expansion and Local Power in Batang, 1842-1939 William M. Coleman, IV This dissertation analyzes the process of state building by Qing imperial representatives and Republican state officials in Batang, a predominantly ethnic Tibetan region located in southwestern Sichuan Province. Utilizing Chinese provincial and national level archival materials and Tibetan language works, as well as French and American missionary records and publications, it explores how Chinese state expansion evolved in response to local power and has three primary arguments. First, by the mid-nineteenth century, Batang had developed an identifiable structure of local governance in which native chieftains, monastic leaders, and imperial officials shared power and successfully fostered peace in the region for over a century. Second, the arrival of French missionaries in Batang precipitated a gradual expansion of imperial authority in the region, culminating in radical Qing military intervention that permanently altered local understandings of power. While short-lived, centrally-mandated reforms initiated soon thereafter further integrated Batang into the Qing Empire, thereby -
History, Development and Corporate Structure
THE DOCUMENT IS IN DRAFT FORM, INCOMPLETE AND SUBJECT TO CHANGE AND THAT THE INFORMATION MUST BE READ IN CONJUNCTION WITH THE SECTION HEADED “WARNING” OF THE COVER OF THE DOCUMENT. HISTORY, DEVELOPMENT AND CORPORATE STRUCTURE OVERVIEW We are a leading ready-mixed concrete producer in China with strong research and development capabilities according to the CIC Report. Our history can be traced back to YNJG Concrete, which was established in April 1996. Its principal businesses included the production and sales of commercial concrete and related products. After being merged and absorbed into YNJG as the Commercial Concrete Division through an asset restructuring, YNJG Concrete was deregistered in May 2012. In December 2016, YNJG injected the operating assets of the Commercial Concrete Division and the equity interests of four operating subsidiaries into the Company through a capital increase. On June 19, 2007, the Company was established as a limited liability company by YNJG Concrete. On December 22, 2017, the Company was converted into a joint stock limited company and renamed “YCIH Green High-Performance Concrete Company Limited.” MILESTONES The following table outlines the milestones in our history of development: Years Events 1996 YNJG Concrete was established, whose principal businesses included the production and sales of commercial concrete and related products. 2007 The Company was established by YNJG Concrete in Kunming, Yunnan Province as a limited liability company, i.e., YNJG Green High- Performance Concrete Co., Ltd. (雲南建工綠色高性能混凝土有限公司). 2007 YNJG Concrete undertook the project of concrete production and supply for “Kunming University Town (昆明大學城)”, and from 2007 to 2010, it produced and supplied more than 800,000 cubic meters of concrete for this project. -
Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: a Case of the Ningxia Hui Autonomous Region, China
sustainability Article Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China Rong Li 1, Rui Han 1, Qianru Yu 1, Shuang Qi 2 and Luo Guo 1,* 1 College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China; [email protected] (R.L.); [email protected] (R.H.); [email protected] (Q.Y.) 2 Department of Geography, National University of Singapore; Singapore 117570, Singapore; [email protected] * Correspondence: [email protected] Received: 25 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Ecological vulnerability, as an important evaluation method reflecting regional ecological status and the degree of stability, is the key content in global change and sustainable development. Most studies mainly focus on changes of ecological vulnerability concerning the temporal trend, but rarely take arid and semi-arid areas into consideration to explore the spatial heterogeneity of the ecological vulnerability index (EVI) there. In this study, we selected the Ningxia Hui Autonomous Region on the Loess Plateau of China, a typical arid and semi-arid area, as a case to investigate the spatial heterogeneity of the EVI every five years, from 1990 to 2015. Based on remote sensing data, meteorological data, and economic statistical data, this study first evaluated the temporal-spatial change of ecological vulnerability in the study area by Geo-information Tupu. Further, we explored the spatial heterogeneity of the ecological vulnerability using Getis-Ord Gi*. Results show that: (1) the regions with high ecological vulnerability are mainly concentrated in the north of the study area, which has high levels of economic growth, while the regions with low ecological vulnerability are mainly distributed in the relatively poor regions in the south of the study area. -
6. Estimates of Compensation Fees for Land Acquisition and House Demolition
RP895 V1 Public Disclosure Authorized Zhaotong Central City Environmental Construction Project Resettlement Action Plan (RAP) Public Disclosure Authorized Public Disclosure Authorized Management Office of Foreign-funded Urban Construction Projects of Zhaoyang District, Zhaotong Municipality Resettlement Office of World Bank Financed Zhaotong Central City Environmental Construction Project Zhaotong, China, November 2009 Public Disclosure Authorized 1 Summary A. Overview 1. The Zhaotong Central City Environmental Construction Project (hereinafter referred to as the “Project”) consists of 3 components: northern area water supply and pipeline project, central city sewage treatment and intercepting sewer project and central city river rehabilitation project. The Project has a construction period of 5 years and a total investment estimate of 825 million yuan, including a World Bank loan of US$60 million yuan. 2. The Project Coordinating and Leading Group of Foreign Funded Projects of Zhaoyang District, Zhaotong Municipality is the executing agency of the Project, and the Management Office of Foreign-funded Urban Construction Projects of Zhaoyang District and the Owner are the implementing agencies of the Project. According to the latest feasibility study outputs, the detailed socioeconomic survey and the impact survey, the Project Management Office (PMO) of Zhaoyang District, Zhaotong Municipality has prepared this RAP with the assistance of the China Cross-Cultural Consulting Center at Sun Yat-sen University (CCCC at SYU) and World Bank experts. B. Impacts of the Project 3. During November 7-15, 2009, the Owner made a detailed survey of the key physical indicators affected by the Project, such as population, houses and attachments, land and special facilities, according to the latest feasibility study outputs, with the assistance of local governments at all levels, administrative villages, communities, villager team officials and the design agency. -
(Arachnida, Pseudoscorpiones: Neobisiidae) from Yunnan Province, China
© Entomologica Fennica. 30 November 2017 A new cave-dwelling species of Bisetocreagris Æurèiæ (Arachnida, Pseudoscorpiones: Neobisiidae) from Yunnan Province, China Yun-Chun Li, Ai-Min Shi & Huai Liu* Li, Y.-C., Shi, A.-M. & Liu, H. 2017: A new cave-dwelling species of Biseto- creagris Æurèiæ (Arachnida, Pseudoscorpiones: Neobisiidae) from Yunnan Pro- vince, China. — Entomol. Fennica 28: 212–218. A new pseudoscorpion species, Bisetocreagris xiaoensis Li&Liu,sp. n.,isde- scribed and illustrated from specimens collected in caves in Yanjin County, Yunnan Province, China. An identification key is provided to all known cave- dwelling representatives of the genus Bisetocreagris in the world. Y.-C. Li, College of Plant Protection, Southwest University, Beibei, Chongqing 400700, China; E-mail: [email protected] A.-M. Shi, Key Laboratory of Southwest China Wildlife Resources Conservation, Institute of Rare Animals & Plants, China West Normal University, Nanchong, Sichuan 637009, China; E-mail: [email protected] H. Liu (*Corresponding author), College of Plant Protection, Southwest Univer- sity, Beibei, Chongqing 400700, China; E-mail: [email protected] Received 12 May 2017, accepted 10 July 2017 1. Introduction exterior sub-basal trichobothria being located on the lateral distal side of the hand, thus five The pseudoscorpion subfamily Microcreagrinae trichobothria are grouped basally (Mahnert & Li Balzan belongs to the family Neobisiidae Cham- 2016). berlin. It is divided into 32 genera with only three At present, the genus Bisetocreagris contains genera, Bisetocreagris Æurèiæ, 1983, Microcre- 35 species and 1 subspecies and is widely distrib- agris Balzan, 1892 and Stenohya Beier, 1967 uted in Afghanistan, China, India, Japan, Kyr- having been reported from China (Harvey 2013, gyzstan, Mongolia, Nepal, Philippines, Pakistan, Mahnert & Li 2016). -
Prevalence of and Risk Factors for Depression Among Older Persons 6 Months After the Lushan Earthquake in China: a Cross-Sectional Survey
ORIGINAL RESEARCH published: 25 September 2020 doi: 10.3389/fpsyt.2020.00853 Prevalence of and Risk Factors for Depression Among Older Persons 6 Months After the Lushan Earthquake in China: A Cross-Sectional Survey Lan Li 1,2,3,7, Jan D. Reinhardt 3,4,5, Andrew Pennycott 6, Ying Li 7,8 and Qian Chen 7,8* 1 West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China, 2 School of Nursing, Southwest Medical University, Luzhou, China, 3 The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China, 4 Swiss Paraplegic Research, Nottwil, Switzerland, 5 Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland, 6 Sensory-Motor Systems Lab, Department of Health Science and Technology ETH Zürich, Zürich, Switzerland, 7 The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China, 8 National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, China Edited by: Background: Older persons are particularly vulnerable to the impact of earthquakes and Francesca Assogna, Santa Lucia Foundation (IRCCS), Italy are more likely to suffer from depression. Reviewed by: Objectives: We aimed to estimate the prevalence of depression, to compare the Valentina Ciullo, prevalence between disaster-affected and non-disaster affected areas, and to explore Santa Lucia Foundation (IRCCS), Italy Clelia Pellicano, additional risk factors for depression 6 months after the Lushan earthquake. Santa Lucia Foundation (IRCCS), Italy Design: Delfina Janiri, A cross-sectional study was conducted. Sapienza University of Rome, Italy Setting: A magnitude 7.0 earthquake occurred in Lushan County, Ya’an Prefecture, *Correspondence: Sichuan Province, on April 20, 2013. -
Development of Novel SCAR Markers for Genetic Characterization of Lonicera Japonica from High GC-RAMP-PCR and DNA Cloning
Development of novel SCAR markers for genetic characterization of Lonicera japonica from high GC-RAMP-PCR and DNA cloning J.L. Cheng1*, J. Li1*, Y.M. Qiu1,2*, C.L. Wei1,3, L.Q. Yang1 and J.J. Fu1,3,4 1Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Sichuan Medical University, Luzhou, Sichuan, China 2Maternal and Child Health Care Hospital of Zigong, Zigong, Sichuan, China 3State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China 4Judicial Authentication Center, Sichuan Medical University, Luzhou City, Sichuan, China *These authors contributed equally to this study. Corresponding author: J.J. Fu E-mail: [email protected] / [email protected] Genet. Mol. Res. 15 (2): gmr.15027737 Received December 16, 2015 Accepted January 15, 2016 Published April 27, 2016 DOI http://dx.doi.org/10.4238/gmr.15027737 ABSTRACT. Sequence-characterized amplified region (SCAR) markers were further developed from high-GC primer RAMP-PCR- amplified fragments from Lonicera japonica DNA by molecular cloning. The four DNA fragments from three high-GC primers (FY- 27, FY-28, and FY-29) were successfully cloned into a pGM-T vector. The positive clones were sequenced; their names, sizes, and GenBank numbers were JYHGC1-1, 345 bp, KJ620024; YJHGC2-1, 388 bp, KJ620025; JYHGC7-2, 1036 bp, KJ620026; and JYHGC6-2, 715 bp, KJ620027, respectively. Four novel SCAR markers were developed by designing specific primers, optimizing conditions, and PCR validation. The developed SCAR markers were used for the genetic authentication Genetics and Molecular Research 15 (2): gmr.15027737 ©FUNPEC-RP www.funpecrp.com.br J.L. -
CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in Effect As Of: 28 July 2006
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03 CDM – Executive Board page 1 CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006 CONTENTS A. General description of project activity B. Application of a baseline and monitoring methodology C. Duration of the project activity / crediting period D. Environmental impacts E. Stakeholders‟ comments Annexes Annex 1: Contact information on participants in the project activity Annex 2: Information regarding public funding Annex 3: Baseline information Annex 4: Monitoring plan PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03 CDM – Executive Board page 2 SECTION A. General description of project activity A.1. Title of the project activity: Project title: Sichuan Dechang Xinma 120 MW Hydropower project PDD Version: 1.0 Completion date PDD: 11/08/2009 A.2. Description of the project activity: The Sichuan Dechang Xinma 120 MW Hydropower project (hereafter referred to „ the project „ or „project‟) involves the construction of a run-of-river hydropower station at the main stream of the Anning River at Meizi Village, Dechang county of Sichuan Province, China, which is constructed and operated by Dechang Xinma Hydropower development Co., Ltd. The dam locates 40 km from Dechang County, The total installed capacity of the project will be 120MW and the total surface area of the reservoir at full capacity is 374,000m2 and the power density of the project is 320 W/m2. The expected annual effective operating hour is 4,086 hours and annual power generation is about 573,960MWh. The expected annual power supply is 544,000 MWh. -
Cloning and Functional Verification of CYP408A3 and CYP6CS3 Related to Chlorpyrifos Resistance in the Sogatella Furcifera
biology Article Cloning and Functional Verification of CYP408A3 and CYP6CS3 Related to Chlorpyrifos Resistance in the Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) Yanwei Ruan 1,†, Xinxian Liu 2, Changwei Gong 1,† , Yuming Zhang 1, Litao Shen 1,†, Hasnain Ali 1,†, Yanyan Huang 2,* and Xuegui Wang 1,*,† 1 Biorational Pesticide Research Lab, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (Y.R.); [email protected] (C.G.); [email protected] (Y.Z.); [email protected] (L.S.); [email protected] (H.A.) 2 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; [email protected] * Correspondence: [email protected] (Y.H.); [email protected] (X.W.) † These authors have equally contributed to this work. Simple Summary: As an important enzyme system in organisms, P450 multi-functional oxidase not only participates in the metabolism and synthesis of substances in organisms but can also maintain the normal physiological functions of organisms under stress. As one of the important rice pests, the harm caused by white-backed planthoppers has been increasing in recent years. Although the application of chemical pesticides as one of the prevention and control measures can slow Citation: Ruan, Y.; Liu, X.; Gong, C.; down the harm of white-backed planthoppers, its resistance is also rising rapidly. Among them, Zhang, Y.; Shen, L.; Ali, H.; Huang, Y.; the generation of metabolic resistance dominated by the P450 enzyme is more common. In this study, Wang, X. Cloning and Functional we measured the expression of ten P450 gene in vivo situations with a background of chlorpyrifos Verification of CYP408A3 and resistance in white-backed planthoppers. -
My Visits to the Hmong in the Triangle of Guizhou, Sichuan and Yunnan
A Hmong Scholar’s Visit to China: the Hmong in the Triangle of Guizhou, Sichuan and Yunnan by Kou Yang Nyob luag ntuj yoog luag txuj, nyob luag av yoog luag tsav (‘In Rome be like the Romans’--- Hmong proverb) I have made a few visits to the Hmong of the triangle of Guizhou, Sichuan and Yunnan, and will highlight below two of these visits: the visit in August 2009 to the Hmong of Qianxi (黔西),and my 2014 visit to the Hmong of Xingwen, Gong xian, Junlian, Gulin, Xuyong, Yanjin, Yiliang and Zhaotong. In early August 2009, I led a group of international scholars of Hmong studies to do a post conference visit to the Hmong/Miao in Guizhou Province, China. This visit was under the auspices and sponsorship of the Guizhou Miao Studies Association (also known as the Miao Cultural Development Association), and the guidance of its Vice-President, Professor Zhang Xiao. The group visited both Qiandongnan (Southeast Guizhou) and Qianxi (West Guizhou) Hmong/Miao of Guizou. The visit was my third trip to Qiandongnan, so it was not so special because I had previously written about and travelled to many areas within Qiandongnan. Moreover, Qiandongnan has been Guizhou’s premier cultural tourist region for decades; the Hmu represent the largest sub-group of the Miao in Qiandongnan. The language of the Hmu belongs to the Eastern branch of the Miao language. Economically, educationally, and politically, the Hmu are much better off than the Hmong and Ah Mao, who speak the Western branch of the Miao language. For example, I met with so many politicians, bureaucrats and professors of Hmu ancestry in Guiyang, but only one professor of Hmong descent. -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Post-Disaster Assessment of 2017 Catastrophic Xinmo Landslide (China) by Spaceborne Sar Interferometry
This paper has to be cited as: Dai K, Xu Q, Li Z, Tomás R, Fan X, Dong X, Li W, Zhou Z, Gou J and Ran P (2019) Post-disaster assessment of 2017 catastrophic xinmo landslide (china) by spaceborne sar interferometry. Landslides. doi: 10.1007/s10346-019-01152-4. The final publication is available at Springer via: https://link.springer.com/article/10.1007/s10346-019-01152-4 1 Post-disaster assessment of 2017 catastrophic Xinmo landslide 2 (China) by spaceborne SAR interferometry 3 Keren Dai1,2,3, Qiang Xu1*, Zhenhong Li4, Roberto Tomás5, Xuanmei Fan1, 4 Xiujun Dong1, Weile Li1, Zhiwei Zhou2, Jisong Gou3, Peilian Ran3 5 1. State Key Laboratory of Geohazard Prevention and Geoenviroment Protection, Chengdu 6 University of Technology, Chengdu 610059, China; 7 2. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and 8 Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 9 3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China; 10 4. COMET, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; 11 5. Departamento de Ingeniería Civil, Escuela Politécnica Superior, Universidad de Alicante, 12 P.O. Box 99, E-03080 Alicante, Spain 13 * Corresponding author. [email protected] 14 Abstract: Timely and effective post-disaster assessment is of significance for the 15 design of rescue plan, taking disaster mitigation measures and disaster analysis. Field 16 investigation and remote sensing methods are the common way to perform post-disaster 17 assessment, which are usually limited by dense cloud coverage, potential risk and tough 18 transportation etc.