Leo Philip Kadanoff: Maestro Who Connected Physics on Multiple Scales

Total Page:16

File Type:pdf, Size:1020Kb

Leo Philip Kadanoff: Maestro Who Connected Physics on Multiple Scales news & views LEO PHILIP KADANOFF Maestro who connected physics on multiple scales “One might argue, as I do, that the at the University of Chicago, Kadanoff connections among ‘laws of nature’ explored thermal convection in an at different scales of energy, length or attempt to understand the scaling laws aggregation is the root subject of physics.” characterizing the most extreme turbulent These words, penned by Leo P. Kadanoff states. Together they created a vibrant in Nature as part of his obituary for intellectual environment that attracted © THOMAS A. WITTEN Kenneth G. Wilson, are as apt a description some of the most brilliant young scientists of Kadanoff’s scientific legacy as they are from around the world, many of whom are of Wilson’s. Kadanoff, who passed away on now leaders in condensed matter theory 26 October 2015 after a short illness, often and experiment. stated that his theory of scaling at phase In these and other fields, all generally transitions was his “best work”: without far from equilibrium, the hallmark of doubt, his name will forever be inextricably Kadanoff’s contributions was the deceptive linked with the idea of block spins. Its simplicity with which he provided the inclusion in the title of Wilson’s famous minimal ingredients that made the problem 1971 paper is a rare, almost unprecedented one fell swoop the microscopic Hamiltonian interesting, but at the same time tractable circumstance allowed by the editors of of a system to its system-size thermodynamic or approachable. Kadanoff was particularly Physical Review B, who were evidently more free energy, but instead marching one scale at interested in the way in which simple aware of the scientific justification than the a time from small to large. particle dynamics could, when scaled up to members of the committee that awarded In Kadanoff’s formulation, degrees of many-particle systems, replicate complex the 1982 Nobel Prize in Physics solely freedom on a small scale would influence phenomena in the physical world. Thus, he to Wilson. degrees of freedom on a larger scale by studied how systems of random walkers Kadanoff was born in 1937 and changing or ‘renormalizing’ the parameters could simulate air bubbles growing in spent his early life in New York City. He of the larger-scale Hamiltonian. This process, viscous fluids, and how systems of colliding received his PhD from Harvard in 1960 iterated from atomic level to system-size particles, subject only to conservation laws and was a postdoctoral researcher at level, led to a mathematical structure of mechanics, could be used to simulate the Niels Bohr Institute in Copenhagen identical to that postulated by Widom. complex flows, including turbulence. His until he moved to the University of Although Kadanoff’s ‘block spin construction’ fascination with the way in which large- Illinois in 1962. His work there concerned related the physics on different scales, it did scale complex phenomena were the the development of many-body theory not on its own provide a calculational method outcome of simple microscopic rules would techniques, culminating in a short but highly for estimating critical exponents. This last persist until the end of his career, when influential monograph with Gordon Baym, step was undertaken by Wilson through his he became interested in the historical and which is still widely used today. realization that iteration of a Hamiltonian philosophical aspects of the applications of Kadanoff found himself, in the mid- from one scale to another constituted a form renormalization group concepts. 1960s, working on the problem of phase of a dynamical system, whose fixed points Kadanoff received many honours transitions. It had been known since the and the linearized trajectories around them and was also active in community work of Lev Landau in 1937 that second- controlled the phases and phase transitions service, serving as president of the order phase transitions would exhibit of the system. The insights derived from American Physical Society in 2007. power-law singularities or divergences as Widom, Kadanoff and Wilson’s work He will be remembered not only for the the temperature approached the critical revolutionized our understanding of the scientific brilliance that matched the ever- point. But 30 years later, the exponents process of constructing theories in statistical present twinkle in his eyes, but also for characterizing these singularities, which mechanics, high-energy physics and beyond. the dry humour that peppered his writings had been measured or estimated by During the 1980s and 1990s, Kadanoff’s and casual conversation. His generosity numerical methods in a number of research shifted to dynamical system theory. and hospitality to visitors were legendary, systems, were in clear disagreement with Kadanoff was especially interested in the fuelled in part by his creativity in obtaining Landau’s predictions. similarities between diffusion-limited growth funding for his enterprises. With his A crucial contribution was made processes, such as those responsible for the passing, the scientific community has lost in 1965 by Benjamin Widom of growth of snowflakes, and the growth of air one of its most original and influential Cornell University, who showed how the bubbles in quasi-two-dimensional confined thinkers, who sought, and frequently found, form of the scaling laws near the critical viscous fluids. This class of problems was the simplicity underlying the apparent point could be obtained from assuming characterized by exotic scaling behaviour complexity of the world around us. mathematical homogeneity in the equation that went well beyond simple fractal of state, but the interpretation of this ideas, leading to asymptotics beyond NIGEL GOLDENFELD assumption seemed obscure. Kadanoff made all orders and multifractal scalings — Nigel Goldenfeld is in the Department of Physics, the perspicacious insight that statistical now part of the standard vocabulary of University of Illinois at Urbana-Champaign, mechanics could be formulated not merely dynamical systems. Working closely with 1110 W. Green, Urbana, Illinois 61801, USA. in terms of a partition function relating in experimental colleague Albert Libchaber e-mail: [email protected] NATURE PHYSICS | VOL 11 | DECEMBER 2015 | www.nature.com/naturephysics 995 © 2015 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • The INT @ 20 the Future of Nuclear Physics and Its Intersections July 1 – 2, 2010
    The INT @ 20 The Future of Nuclear Physics and its Intersections July 1 – 2, 2010 Program Thursday, July 1: 8:00 – 8:45: Registration (Kane Hall, Rom 210) 8:45 – 9:00: Opening remarks Mary Lidstrom, Vice Provost for Research, University of Washington David Kaplan, INT Director Session chair: David Kaplan 9:00 – 9:45: Science & Society 9:00 – 9:45 Steven Koonin, Undersecretary for Science, DOE The future of DOE and its intersections 9:45 – 10:30: Strong Interactions and Fundamental Symmetries 9:45 – 10:30 Howard Georgi, Harvard University QCD – From flavor SU(3) to effective field theory 10:30 – 11:00: Coffee Break Session chair: Martin Savage 11:00 – 11:30 Silas Beane, University of New Hampsire Lattice QCD for nuclear physics 11:30 – 12:00 Paulo Bedaque, University of Maryland Effective field theories in nuclear physics 12:00 – 12:30 Michael Ramsey-Musolf, University of Wisconsin Fundamental symmetries of nuclear physics: A window on the early Universe 12:30 – 2:00: Lunch (Mary Gates Hall) 1 Thursday, July 1 2:00 – 5:00: From Partons to Extreme Matter Session chair: Gerald Miller 2:00 – 2:30 Matthias Burkardt, New Mexico State University Transverse (spin) structure of hadrons 2:30 – 3:00 Barbara Jacak, SUNY Stony Brook Quark-gluon plasma: from particles to fields? 3:00 – 3:45 Raju Venugopalan, Brookhaven National Lab Wee gluons and their role in creating the hottest matter on Earth 3:45 – 4:15: Coffee Break Session chair: Krishna Rajagopal 4:15 – 4:45 Jean-Paul Blaizot, Saclay Is the quark-gluon plasma strongly or weakly coupled? 4:45
    [Show full text]
  • January 2021 Newsletter
    APS Division of In this issue Astrophysics • April Meeting Online • Upcoming DAP election alert Electronic Newsletter January 2021 • APS Fellows • Bethe Prize Winner • Student/Postdoc Travel Grants • April Meeting: DAP and Plenary Programs & Abstract Categories • Snowmass Update APS DAP Officers 2020–2021: Finalize your plans now to attend the April 2021 meeting held virtually this year. A • Chair: Glennys Farrar number of plenary and invited sessions will • Past Chair: Joshua Frieman feature presentations by DAP members. Here are the key details: • Chair Elect: Chris Fryer • Vice Chair: Daniel Holz What: April 2021 APS Meeting ​ ​ ​ • Secretary/Treasurer: Judith Racusin When: April 17 - 20, 2021 ​ • Deputy Sec./Treasurer: Amy Furniss Where: Online ​ Abstract Deadline: Jan 8, 2021, 5 pm EST • Division Councilor: Cole Miller ​ Travel Grant Deadline: Jan 31, 2021 • Member-at-Large: Stefano Profumo ​ Early Registration Deadline: Feb 26, 2021 • Member-at-Large: Ignacio Taboada ​ Late Registration Deadline: Mar 26, 2021 ​ • Member-at-Large: Erin Kara • Member-at-Large: Laura Blecha The 2021 April Meeting will be virtual. ​ Questions? Comments? Detailed information for the meeting, including details on registration and the scientific Newsletter editors: program can be found online at https://april.aps.org/ Amy Furniss [email protected] HEADS-UP: The ELECTION for next year’s ​ ​ DAP Executive Committee and chairline will Judith Racusin be held soon. Be on the lookout for the [email protected] announcement from APS, and please vote! ​ 1 Dear DAP, Please see the January 2021 DAP newsletter below. It will be archived on the DAP website (https://www.aps.org/units/dap/newsletters/index.cfm).
    [Show full text]
  • B1487(01)Quarks FM.I-Xvi
    Connecting Quarks with the Cosmos Eleven Science Questions for the New Century Committee on the Physics of the Universe Board on Physics and Astronomy Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Govern- ing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineer- ing, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was supported by Grant No. DE-FG02-00ER41141 between the Na- tional Academy of Sciences and the Department of Energy, Grant No. NAG5-9268 between the National Academy of Sciences and the National Aeronautics and Space Administration, and Grant No. PHY-0079915 between the National Academy of Sciences and the National Science Foundation. Any opinions, findings, and conclu- sions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that pro- vided support for the project. International Standard Book Number 0-309-07406-1 Library of Congress Control Number 2003100888 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu and Board on Physics and Astronomy, National Research Council, NA 922, 500 Fifth Street, N.W., Washington, DC 20001; Internet, http://www.national-academies.org/bpa.
    [Show full text]
  • Renormalization Group for One Dimensional Ising Model Masatsugu Sei Suzuki, Department of Physics, SUNY at Binghamton (Date: December 04, 2016)
    Renormalization group for one dimensional Ising model Masatsugu Sei Suzuki, Department of Physics, SUNY at Binghamton (Date: December 04, 2016) Kenneth Geddes Wilson (June 8, 1936 – June 15, 2013) was an American theoretical physicist and a pioneer in leveraging computers for studying particle physics. He was awarded the 1982 Nobel Prize in Physics for his work on phase transitions—illuminating the subtle essence of phenomena like melting ice and emerging magnetism. It was embodied in his fundamental work on the renormalization group. https://en.wikipedia.org/wiki/Kenneth_G._Wilson Here we discuss the renormalization group (RG) for the simplest possible example- the one- dimensional Ising model. The results of the RG calculations are compared with the exact calculations of the correlation functions and the free energy of the one-dimensional Ising model; the temperature T = 0 can be treated as a second-order critical point. ______________________________________________________________________________ Leo Philip Kadanoff: Kadanoff was born in 1937 and spent his early life in New York City. He received his PhD from Harvard in 1960 and was a postdoctoral researcher at the Niels Bohr Institute in Copenhagen until he moved to the University of Illinois in 1962. His work there concerned the development of many-body theory techniques, culminating in a short but highly influential monograph with Gordon Baym, which is still widely used today. Kadanoff found himself, in the mid- 1960s, working on the problem of phase transitions. It had been known since the work of Lev Landau in 1937 that second-order phase transitions would exhibit power-law singularities or divergences as the temperature approached the critical point.
    [Show full text]
  • Newsletter No. 130 February 2002
    Division of Nuclear Physics Newsletter No. 130 The American Physical Society February 2002 TO: Members of the Division of Nuclear Physics, APS FROM: Benjamin F. Gibson, LANL – Secretary-Treasurer, DNP ACCOMPANYING THIS NEWSLETTER: Divisional Councilor (December 2005) • Poster for DNP 2002 Alejandro Garcia, Notre Dame (2003) • DNP02 Speaker Nomination form Charlotte Elster, Ohio Univ. (2002) John C. Hardy, Texas A&M (2003) T. S. Harry Lee, ANL (2002) Bradley M. Sherrill, MSU (2002) 2002 Willem T. H. van Oers, Manitoba (2003) DNP 2. CALL FOR DNP COMMITTEE SUGGESTIONS Future Deadlines The terms of some of the members of the following DNP committees expire in April 2002: Bethe, Bonner, Fellowship, Nominating, • 29 March 2002 — Speaker Nominations for Fall Meeting Home Page, and Education. Suggestions from the DNP membership • 1 April 2002 — APS Fellowship Nominations for new members of these committees are welcome and should be sent • 1 July 2002 — Nominations for Bonner Prize to Charles Glashausser. A list of committee members for 2002/03 • 1 July 2002 — Nominations for Bethe Prize will be published in the August newsletter. • 1 July 2002 — Nominations for Dissertation Award 3. 2002 BONNER PRIZE WINNER J. David Bowman of the Los Alamos National Laboratory has been A WWW home page for the Division of Nuclear Physics is named the winner of the 2002 Tom W. Bonner Prize in nuclear available at “http://nucth.physics.wisc.edu/dnp.” Information of physics. The citation reads: interest to DNP members -- current research topics, deadlines for meetings, prize nominations, forms, and useful links are In recognition of his leadership in performing precision provided.
    [Show full text]
  • Parquet Theory in Nuclear Structure Calculations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Parquet theory in nuclear structure calculations Elise Bergli Thesis submitted to the degree of Philosophiae Doctor Department of Physics University of Oslo February 2010 © Elise Bergli, 2010 Series of dissertations submitted to the Faculty of Mathematics and Natural Sciences, University of Oslo No. 926 ISSN 1501-7710 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Cover: Inger Sandved Anfinsen. Printed in Norway: AiT e-dit AS. Produced in co-operation with Unipub. The thesis is produced by Unipub merely in connection with the thesis defence. Kindly direct all inquiries regarding the thesis to the copyright holder or the unit which grants the doctorate. Acknowledgements This thesis is primarily, of course, my own work. It has taken quite some time, not all of it pleasant, and I look forward to finally be doing something else. However, looking back, there are several people whom I would like to thank. Without them, I would not have been able to finish. First of all, I thank my adviser Morten Hjorth-Jensen. You have pro- vided more advise and encouragement than most advisers, being accessible and ready to answer questions at almost all times, regardless of time or place. I have really learned a lot from you these years. And I would also like to thank my co-adviser Eivind Osnes for pleasant discussions and having such an immense amount of literature available.
    [Show full text]
  • NEWSLETTER NO. 81 February 1990
    DNPDNP NEWSLETTER NO. 81 February 1990 TO: MEMBERS OF THE DIVISION OF NUCLEAR PHYSICS, APS FROM: VIRGINIA R. BROWN, LLNL, SECRETARY-TREASURER, DNP Komoto, Robert Lanier, Mohammed G. Mustafa, and Betty ACCOMPANYING THIS NEWSLETTER : Voelker, all of LLNL. The members of the 1990 Executive Committee (except for the Division Councillor, terms end 16-19 April APS meeting, Washington DC: at the Spring APS meeting following the year indicated) are as follows: • A listing of the Symposia of the DNP, the invited speakers, and titles of their talks. James B. Ball, ORNL, Chairman (1991) Gerard M. Crawley, Michigan State University, Vice- 24-27 October DNP Meeting, Urbana-Champaign: Chairman (1991) Virginia R. Brown, LLNL, Secretary-Treasurer (1991) • A nomination form for invited speakers. Gerald T. Garvey, LANL, Division Councillor, (1993) • A pre-registration form which includes workshops John Cameron, IUCF (1992) and banquet. Bunny C. Clark, Ohio State University (1991) • A housing form. Robert A. Eisenstein, University of Illinois, Past • United Airlines discount information. Chairman (1991) • A Poster. Wick C. Haxton, University of Washington (1991) Noemie Benczer-Koller, Rutgers University (1992) Jerry A. Nolen, Jr., Michigan State University (1991) Peter D. Parker, Yale University (1992) UTURE EADLINES F D 2. COMMITTEES OF THE DNP • 1 April 1990 - APS Fellowship Nominations (see item 9). The terms of some of the members of the following • 11 May 1990 -Nomination forms for invited speakers DNP committees expire in April 1990: Program, for the Urbana-Champaign meeting. Fellowship, Nominating, Nuclear Science Resources, and • 20 June 1990 - Abstracts for Urbana-Champaign "Physics News". Suggestions from the DNP membership meeting (See item 7).
    [Show full text]
  • Electron-Ion Collider Science
    BOARD ON PHYSICS AND ASTRONOMY (BPA) An Assessment of U.S.-Based Electron-Ion Collider Science A study under the auspices of the U.S. National Academies of Sciences, Engineering, and Medicine Gordon Baym and Ani Aprahamian, Co-Chairs The study is supported by funding from the DOE Office of Science. (Further information can be found at: https://www.nap.edu/25171) The National Academies of Science, Engineering and Medicine The National Academies produce reports that shape policies, inform public opinion, and advance the pursuit of science, engineering, and medicine. The present report is carried out under the leadership of the Board on Physics and Astronomy (James Lancaster, Director). The BPA seeks to inform the government and the public about what is needed to continue the advancement of physics and astronomy and why doing so is important. Committee on Assessment of U.S.-Based Electron-Ion Collider Science The National Academies of Sciences, Engineering, and Medicine was asked by the U.S. Department of Energy to assess the scientific justification for building an Electron-Ion Collider (EIC) facility. The unanimous conclusion of the Committee is that an EIC, as envisioned in this report, would be… … a unique facility in the world that would answer science questions that are compelling, fundamental, and timely, and help maintain U.S. scientific leadership in nuclear physics. What is an Electron-Ion Collider? An advanced accelerator that collides beams of electrons with beams of protons or heavier ions (atomic nuclei). Electron-ion center of mass energy ~20-100 GeV, upgradable to ~140 GeV. High luminosity and polarization! 1) highly polarized electrons, E ~ 4 GeV to possibly 20 GeV 2) highly polarized protons, E ~ 30 GeV to some 300 GeV, and heavier ions Brookhaven Jefferson Lab Two possible configurations: Brookhaven Nat’l Lab and Jefferson Lab Committee Statement of Task -- from DOE to the BPA The committee will assess the scientific justification for a U.S.
    [Show full text]
  • Laboratory Mesurements in Nuclear Astrophysics
    Seoul National University, Muju Resort, Korea, 20-25 August, 1993 ASTROPHYSICS SUMMER SCHOOL(S) - 1993, LECTURES ON: LABORATORY MEASUREMENTS IN NUCLEAR ASTROPHYSICS Moshe Gai1 A.W. Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06511 Abstract After reviewing some of the basic concepts, nomenclatures and parametrizations of Astronomy, Astrophysics and Cosmology, we introduce a few central problems in Nu- clear Astrophysics, including the hot-CNO cycle, helium burning and solar neutrino’s. We demonstrate that Secondary (Radioactive) Nuclear Beams allow for con- siderable progress on these problems. Table of Content: 1. Introduction 2. Scales and Classification of Stars 3. Reaction Theory, Methods and Applications: The PP processes The CNO and hot-CNO cycles Burning processes in massive stars arXiv:nucl-th/9405020v1 18 May 1994 4. Central Problems in Nuclear Astrophysics: Solar neutrino’s and the 7Be(p,γ)8B reaction The hot-CNO cycle and the 13N(p,γ)14O reaction Helium burning and the 12C(α,γ)16O reaction 5. Solutions [with secondary (radioactive) beams]: Direct and indirect measurements of the 13N(p,γ)14O reaction Helium burning from the beta-delayed alpha-emission of 16N The Coulomb Dissociation of 14O and 8B 1Permanent Address: Dept. of Physics, University of Connecticut, U-46, 2152 Hillside Dr.,Storrs, CT 06269-3046, [email protected], [email protected]. 1 INTRODUCTION In this lecture notes I will discuss some aspects of Nuclear Astrophysics and Labora- tory measurements of nuclear processes which are of central value for stellar evolution and models of cosmology. These reaction rates are important for several reason.
    [Show full text]
  • APS Announces Spring 2002 Prize and Award Recipients
    SpringPrizes and 2002Awards APS Announces Spring 2002 Prize and Award Recipients Thirty-seven APS prizes and ception of the Brookhaven Relativistic Mumbai, India. Jain’s most important con- Schwarz received his awards will be presented during spe- Heavy Ion Collider (RHIC). tribution has been his introduction of Ph.D. in 1966 from U.C. cial sessions at three spring meetings electron-flux combinations called “compos- Berkeley. He joined ite fermions”. Jain has extended and Princeton University as a of the Society: the 2001 March Meet- 2002 BIOLOGICAL PHYSICS ing, 12-16 March, in Seattle, WA; the developed the theory of composite fermi- junior faculty member in PRIZE ons into several directions, in particular, 1966. In 1972 he moved to 2001 April Meeting, April 28 - May 1, Carlos Bustamente toward extracting detailed quantitative infor- Caltech, where he has re- in Washington, DC; and the 2001 meet- mation which can be compared with exact mained ever since. Schwarz has worked ing of the APS Division of Atomic, University of California, Berkeley results as well as experiment. on superstring theory for almost his en- Molecular and Optical Physics, May tire professional career. In 1984 Michael Citation: “For his pioneering work in single Read received his Ph.D. 15-19, in London, Ontario, Canada. Ci- Green and he discovered an anomaly can- molecule biophysics and the elucidation of the for work in Condensed tations and biographical information cellation mechanism, which resulted in fundamental physics principles underlying the Matter Theory in 1986 for each recipient follow. Additional string theory becoming one of the hottest mechanical properties and forces involved in from Imperial College, areas in theoretical physics.
    [Show full text]
  • Dimensions Department of Physics & Astronomy
    Dimensions Department of Physics & Astronomy Photo courtesy of Guohua Wei IN THIS ISSUE: ­Faculty News ­Alumni Focus ­Selected Publications ­2015 Graduate and Masters Students ­Research Staff ­Society of Physics Students ­Graduate Achievements ­Department Events ­Undergraduate Achievements Faculty News Claude­André Faucher­Giguère's research group Vicky Kalogera has accepted an inviation to serve on (GalForm @ NU) is part ofa multi-institution team that the Committee on Astronomy and Astrophysics (CAA) has been awarded a large amount oftime to use the ofthe National Research Council. The CAA's purpose Hubble Space Telescope to map the gas flows around is to support scientific progress in astronomy and the Andromeda galaxy. It will be the first time ever that astrophysics and assist the federal goverment in they will be able to produce a spatially-resolved map of integrating and planning programs in these fields. It is the gas around a galaxy other than the Milky Way. This a joint committee ofthe Space Studies Board and the work is very important because these gas flows regulate Board on Physics andAstronomy under the National how galaxies grow. The observations will be led by Academies ofSciences, Engineering, and Medicine in collaborators at the University ofNotre Dame and the Washington, D.C.. group at Northwestern will develop the theoretical tools needed for the interpretation ofthe Hubble Prof. Kalogera has received the 2015 Hans A.Bethe observations. This ambitious project, called Project Prize. This distinguished award is given to individuals AMIGA (Absorption Maps In the Gas ofAndromeda), who have made outstanding contributions to will require an enormous 150 hours ofHubble Space astrophysics, nuclear physics, nuclear astrophysics.
    [Show full text]
  • APS Announces Spring 2008 Prize and Award Recipients
    APS Announces Spring 2008 Prize and Award Recipients Thirty-five prizes and awards will be Tom W. Bonner Prize He served as staff sci- Murray Hill, NJ. In 1990 presented during special sessions at three in Nuclear Physics entist at the Rowland he was appointed profes- Institute for Science in sor at the University of spring meetings of the Society: the 2008 March Arthur M. Poskanzer Cambridge, and Lecturer California at Berkeley, Meeting, March 10-14, in New Orleans, LA, Lawrence Berkeley National Laboratory at Harvard University where he has served up the 2008 April Meeting, April 12-15, in St. Citation: “In recognition of his pioneering role in (1987-1993), then Profes- to the present. Through- Louis, MO, and the 2008 Atomic, Molecular the experimental studies of flow in Relativistic Heavy sor of molecular biology out his career, Orenstein and Optical Physics Meeting, May 27-31, in Ion Collisions.” at Princeton University has used optical methods (1994-1999), before join- State College, PA. Arthur Poskanzer to explore the properties ing Stanford University is Distinguished Senior of exotic excitations in Citations and biographical information (1999-present). Block’s Scientist Emeritus with novel materials. Since then he has used a wide vari- for each recipient follow. The Apker Award research lies at the interface of physics and biology, the Lawrence Berkeley ety of time-resolved optical techniques to investigate particularly in the study of molecular motors, such as recipients appeared in the December 2007 issue National Laboratory. kinesin and RNA polymerase. His laboratory has pio- solitons, polarons, and triplet excitons in conducting of APS News (http://www.aps.org/programs/ Poskanzer is a pioneer in polymers, d-wave quasiparticles in high-T supercon- neered the use of laser-based optical traps, also called c honors/awards/apker.cfm).
    [Show full text]