Topological Set Theories and Hyperuniverses Andreas Fackler

Total Page:16

File Type:pdf, Size:1020Kb

Topological Set Theories and Hyperuniverses Andreas Fackler Topological Set Theories and Hyperuniverses Andreas Fackler Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig–Maximilians–Universität München vorgelegt von Andreas Fackler am 15. Dezember 2011 Topological Set Theories and Hyperuniverses Andreas Fackler Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig–Maximilians–Universität München vorgelegt von Andreas Fackler am 15. Dezember 2011 Erstgutachter: Prof. Dr. Hans-Dieter Donder Zweitgutachter: Prof. Dr. Peter Koepke Tag der mündlichen Prüfung: 13. April 2012 Contents Zusammenfassung / Summary 0 Introduction 2 1 Topological Set Theories 5 1.1 Atoms, sets and classes . .5 1.2 Essential Set Theory . .6 1.3 Ordinal Numbers . 12 1.4 Pristine Sets and Inner Models . 19 1.5 Positive Specification . 25 1.6 Regularity and Union . 29 1.7 Uniformization . 31 1.8 Compactness . 37 2 Models of Topological Set Theories 39 2.1 Hyperuniverses . 39 2.2 Mild Ineffability and Topology . 42 2.3 Categories of κ-topological spaces . 48 2.4 Ultrametric Spaces and Generalized Cantor Cubes . 54 2.5 Direct Limit Models . 61 2.6 Inverse Limit Models . 69 2.7 Metric Spaces and the Hilbert Cube . 80 Open Questions 83 0 Zusammenfassung Wir stellen ein neues mengentheoretisches Axiomensystem vor, hinter welchem eine topolo- gische Intuition steht: Die Menge der Teilmengen einer Menge ist eine Topologie auf dieser Menge. Einerseits ist dieses System eine gemeinsame Abschwächung der Zermelo-Fraenkel- schen Mengenlehre ZF, der positiven Mengenlehre GPK+ und der Theorie der Hyperuni- versen; andererseits erhält es größtenteils die Ausdruckskraft dieser Theorien und hat dieselbe Konsistenzstärke wie ZF. Wir heben das zusätzliche Axiom1 einer universellen Menge als das- jenige heraus, das die Konsistenzstärke zu der von GPK+ erhöht und untersuchen weitere Axiome und Beziehungen zwischen diesen Theorien. 1 Hyperuniversen sind eine natürliche Klasse von Modellen für Theorien mit einer universellen Menge. Die @0- und @1-dimensionalen Cantorwürfel sind Beispiele von Hyperuniversen mit Additivität @0, da sie homöomorph zu ihrem Exponentialraum sind. Wir beweisen, dass im Bereich der Räume mit überabzählbarer Additivität die entsprechend verallgemeinerten Cantorwürfel diese Eigenschaft nicht haben. Zum Schluss stellen wir zwei komplementäre Konstruktionen von Hyperuniversen vor, die einige in der Literatur vorkommende Konstruktionen verallgemeinern sowie initiale und ter- minale Hyperuniversen ergeben. 1 Summary We give a new set theoretic system of axioms motivated by a topological intuition: The set of subsets of any set is a topology on that set. On the one hand, this system is a common weakening of Zermelo-Fraenkel set theory ZF, the positive set theory GPK+ and the theory of hyperuniverses. On the other hand, it retains most of the expressiveness of these theories and has the same consistency strength as ZF. We single out the additional axiom1 of the universal set as the one that increases the consistency strength to that of GPK+ and explore several other axioms and interrelations between those theories. 1 Hyperuniverses are a natural class of models for theories with a universal set. The @0- and @1-dimensional Cantor cubes are examples of hyperuniverses with additivity @0, because they are homeomorphic to their hyperspace. We prove that in the realm of spaces with uncountable additivity, none of the generalized Cantor cubes has that property. Finally, we give two complementary constructions of hyperuniverses which generalize many of the constructions found in the literature and produce initial and terminal hyperuniverses. 2 Introduction The mathematician considers collections of mathematical objects to be objects themselves. A formula φ(x) with one free variable x divides the mathematical universe into those objects to which it applies and those to which it does not. The collection of all x satisfying φ(x), the class fx j φ(x)g is routinely dealt with as if it were an object itself, a set, which can in turn be a member of yet another set. Russell’s antinomy is one of several paradoxes which show that this is not possible for all formulas φ. Specifically, the class fx j x2 = xg cannot be a set, or otherwise contradictions arise1. An axiomatic set theory can be thought of as an effort to make precise which classes are sets. It simultaneously aims at providing enough freedom of construction for all of classical mathematics and still remain consistent. It therefore must imply that all “reasonable” class comprehensions fx j φ(x)g produce sets and explain why fx j x2 = xg does not. The answer given by Zermelo-Fraenkel set theory (ZF), the most widely used and most deeply studied system of axioms for sets, is the Limitation of Size Principle: Only small classes are sets. x2 = x holds true for too many x, and no single set can comprehend all of them. On the other hand, if a is a set, every subclass fx j φ(x) ^ x2ag also is. However, the totality of all mathematical objects, the universe V = fx j x=xg, is a proper class in ZF. Since V is of considerable interest for the set theorist, several alternative axiom systems without this perceived shortcoming have been proposed. W. V. Quine’s set theory New Foundations (NF), probably the most famous one, is built around a different comprehension scheme: The existence of fx j φ(x)g is postulated only for stratified2 formulas φ(x), avoiding circularities like x 2 x but still admitting x = x. So although the Russell class is a proper class, its superclass V is a set. An interesting peculiarity of NF is that it has been shown by R. B. Jensen in [Jen68] to be consistent relative to ZF (and even much weaker theories), but only if one admits atoms3, objects which are not classes. With the condition that every object is a class, there is no known upper bound to its consistency strength. This thesis is concerned with a third family of set theories originating from yet another possi- ble answer to the paradoxes, or rather from two independent answers: Firstly, instead of the missing delimitation x2a or the circularity, one might blame the nega- tion in the formula x2 = x for Russell’s paradox. The collection of generalized positive formulas is recursively defined by several construction steps not including negation. If the existence of fx j φ(x)g is stipulated for every generalized positive formula, a beautiful “positive” set theory emerges. 1fx j x=2xg 2 fx j x=2xg if and only if fx j x=2xg 2= fx j x=2xg, by definition. 2 A formula is stratified if natural numbers l(x) can be assigned to its variables x in such a way that l(x) = l(y) for each subformula x = y, and l(x) + 1 = l(y) for every subformula x 2 y. 3also called urelements 3 Secondly, instead of demanding that every class is a set, one might settle for the ability to approximate it by a least superset, a closure in a topological sense. Surprisingly such “topological” set theories tend to prove the comprehension principle for generalized positive formulas, and conversely, in positive set theory, the universe is a topolog- ical space. More precisely, the sets are closed with respect to intersections and finite unions, and the universe is a set itself, so the sets represent the closed subclasses of a topology on V. A class is a set if and only if it is topologically closed. The first model of such a theory was constructed by R. J. Malitz in [Mal76] under the condi- tion of the existence of certain large cardinal numbers. E. Weydert, M. Forti and R. Hinnion were able to show in [Wey89, FH89] that in fact a weakly compact cardinal suffices. In [Ess97] and [Ess99], O. Esser exhaustively answered the question of consistency for a specific positive set theory, GPK+ with a choice principle, and showed that it is mutually interpretable with a variant of Kelley-Morse set theory. 1 All known models of positive set theory are hyperuniverses: κ-compact κ-topological Haus- dorff spaces homeomorphic to their own hyperspace4. These structures have been extensively studied: In [FHL96], M. Forti, F. Honsell and M. Lenisa give several equivalent definitions. Forti and Honsell discovered a much more general construction of hyperuniverses described in [FH96b], yielding among other examples structures with arbitrary given κ-compact sub- spaces. Finally, O. Esser in [Ess03] identifies the existence of mildly ineffable cardinals as equivalent to the existence of hyperuniverses with a given weight and additivity. The fact that all known models are hyperuniverses and the concern that axiom schemes given by purely syntactical requirements do not have an immediately clear intuitive meaning, mo- tivate the study of systems of topological axioms rather than theories based on any compre- hension scheme, and to axiomatize parts of the notion of a hyperuniverse “from within”. In his course “Topologische Mengenlehre” in the summer term 2006 at Ludwig-Maximilians- Universität München, H.-D. Donder gave such a topological set theory, explored its set the- oretic and topological consequences and showed that the consistency proofs of positive set theory apply to this system of axioms as well. Overview This thesis is divided into two chapters. In the first one we introduce “essential set theory” (ES), a theory in which the power set defines a topology on each set, which is not necessarily trivial. A variant of positive set theory and ZF both occur as natural extensions of ES, and in particular, essential set theory leaves open the question about a universal set, so this can be investigated separately. Also, it allows for atoms and even for the empty class ; being proper – a statement which has topologically connected models. We will show that several basic set theoretic constructions can be carried out in ES and in particular the theory of ordinal numbers is still available.
Recommended publications
  • A Proof of Cantor's Theorem
    Cantor’s Theorem Joe Roussos 1 Preliminary ideas Two sets have the same number of elements (are equinumerous, or have the same cardinality) iff there is a bijection between the two sets. Mappings: A mapping, or function, is a rule that associates elements of one set with elements of another set. We write this f : X ! Y , f is called the function/mapping, the set X is called the domain, and Y is called the codomain. We specify what the rule is by writing f(x) = y or f : x 7! y. e.g. X = f1; 2; 3g;Y = f2; 4; 6g, the map f(x) = 2x associates each element x 2 X with the element in Y that is double it. A bijection is a mapping that is injective and surjective.1 • Injective (one-to-one): A function is injective if it takes each element of the do- main onto at most one element of the codomain. It never maps more than one element in the domain onto the same element in the codomain. Formally, if f is a function between set X and set Y , then f is injective iff 8a; b 2 X; f(a) = f(b) ! a = b • Surjective (onto): A function is surjective if it maps something onto every element of the codomain. It can map more than one thing onto the same element in the codomain, but it needs to hit everything in the codomain. Formally, if f is a function between set X and set Y , then f is surjective iff 8y 2 Y; 9x 2 X; f(x) = y Figure 1: Injective map.
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • Linear Transformation (Sections 1.8, 1.9) General View: Given an Input, the Transformation Produces an Output
    Linear Transformation (Sections 1.8, 1.9) General view: Given an input, the transformation produces an output. In this sense, a function is also a transformation. 1 4 3 1 3 Example. Let A = and x = 1 . Describe matrix-vector multiplication Ax 2 0 5 1 1 1 in the language of transformation. 1 4 3 1 31 5 Ax b 2 0 5 11 8 1 Vector x is transformed into vector b by left matrix multiplication Definition and terminologies. Transformation (or function or mapping) T from Rn to Rm is a rule that assigns to each vector x in Rn a vector T(x) in Rm. • Notation: T: Rn → Rm • Rn is the domain of T • Rm is the codomain of T • T(x) is the image of vector x • The set of all images T(x) is the range of T • When T(x) = Ax, A is a m×n size matrix. Range of T = Span{ column vectors of A} (HW1.8.7) See class notes for other examples. Linear Transformation --- Existence and Uniqueness Questions (Section 1.9) Definition 1: T: Rn → Rm is onto if each b in Rm is the image of at least one x in Rn. • i.e. codomain Rm = range of T • When solve T(x) = b for x (or Ax=b, A is the standard matrix), there exists at least one solution (Existence question). Definition 2: T: Rn → Rm is one-to-one if each b in Rm is the image of at most one x in Rn. • i.e. When solve T(x) = b for x (or Ax=b, A is the standard matrix), there exists either a unique solution or none at all (Uniqueness question).
    [Show full text]
  • Functions and Inverses
    Functions and Inverses CS 2800: Discrete Structures, Spring 2015 Sid Chaudhuri Recap: Relations and Functions ● A relation between sets A !the domain) and B !the codomain" is a set of ordered pairs (a, b) such that a ∈ A, b ∈ B !i.e. it is a subset o# A × B" Cartesian product – The relation maps each a to the corresponding b ● Neither all possible a%s, nor all possible b%s, need be covered – Can be one-one, one&'an(, man(&one, man(&man( Alice CS 2800 Bob A Carol CS 2110 B David CS 3110 Recap: Relations and Functions ● ) function is a relation that maps each element of A to a single element of B – Can be one-one or man(&one – )ll elements o# A must be covered, though not necessaril( all elements o# B – Subset o# B covered b( the #unction is its range/image Alice Balch Bob A Carol Jameson B David Mews Recap: Relations and Functions ● Instead of writing the #unction f as a set of pairs, e usually speci#y its domain and codomain as: f : A → B * and the mapping via a rule such as: f (Heads) = 0.5, f (Tails) = 0.5 or f : x ↦ x2 +he function f maps x to x2 Recap: Relations and Functions ● Instead of writing the #unction f as a set of pairs, e usually speci#y its domain and codomain as: f : A → B * and the mapping via a rule such as: f (Heads) = 0.5, f (Tails) = 0.5 2 or f : x ↦ x f(x) ● Note: the function is f, not f(x), – f(x) is the value assigned b( f the #unction f to input x x Recap: Injectivity ● ) function is injective (one-to-one) if every element in the domain has a unique i'age in the codomain – +hat is, f(x) = f(y) implies x = y Albany NY New York A MA Sacramento B CA Boston ..
    [Show full text]
  • Primitive Recursive Functions Are Recursively Enumerable
    AN ENUMERATION OF THE PRIMITIVE RECURSIVE FUNCTIONS WITHOUT REPETITION SHIH-CHAO LIU (Received April 15,1900) In a theorem and its corollary [1] Friedberg gave an enumeration of all the recursively enumerable sets without repetition and an enumeration of all the partial recursive functions without repetition. This note is to prove a similar theorem for the primitive recursive functions. The proof is only a classical one. We shall show that the theorem is intuitionistically unprovable in the sense of Kleene [2]. For similar reason the theorem by Friedberg is also intuitionistical- ly unprovable, which is not stated in his paper. THEOREM. There is a general recursive function ψ(n, a) such that the sequence ψ(0, a), ψ(l, α), is an enumeration of all the primitive recursive functions of one variable without repetition. PROOF. Let φ(n9 a) be an enumerating function of all the primitive recursive functions of one variable, (See [3].) We define a general recursive function v(a) as follows. v(0) = 0, v(n + 1) = μy, where μy is the least y such that for each j < n + 1, φ(y, a) =[= φ(v(j), a) for some a < n + 1. It is noted that the value v(n + 1) can be found by a constructive method, for obviously there exists some number y such that the primitive recursive function <p(y> a) takes a value greater than all the numbers φ(v(0), 0), φ(y(Ϋ), 0), , φ(v(n\ 0) f or a = 0 Put ψ(n, a) = φ{v{n), a).
    [Show full text]
  • Polya Enumeration Theorem
    Polya Enumeration Theorem Sasha Patotski Cornell University [email protected] December 11, 2015 Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 1 / 10 Cosets A left coset of H in G is gH where g 2 G (H is on the right). A right coset of H in G is Hg where g 2 G (H is on the left). Theorem If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H. Corollary(Lagrange's theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. In particular, the order of every element of G divides the order of G. Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 2 / 10 Applications of Lagrange's Theorem Theorem n! For any integers n ≥ 0 and 0 ≤ m ≤ n, the number m!(n−m)! is an integer. Theorem (ab)! (ab)! For any positive integers a; b the ratios (a!)b and (a!)bb! are integers. Theorem For an integer m > 1 let '(m) be the number of invertible numbers modulo m. For m ≥ 3 the number '(m) is even. Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 3 / 10 Polya's Enumeration Theorem Theorem Suppose that a finite group G acts on a finite set X . Then the number of colorings of X in n colors inequivalent under the action of G is 1 X N(n) = nc(g) jGj g2G where c(g) is the number of cycles of g as a permutation of X .
    [Show full text]
  • Forcing Axioms and Projective Sets of Reals
    FORCING AXIOMS AND PROJECTIVE SETS OF REALS RALF SCHINDLER Abstract. This paper is an introduction to forcing axioms and large cardinals. Specifically, we shall discuss the large cardinal strength of forcing axioms in the presence of regularity properties for projective sets of reals. The new result shown in this paper says that ZFC + the bounded proper forcing axiom (BPFA) + \every projective set of reals is Lebesgue measurable" is equiconsistent with ZFC + \there is a Σ1 reflecting cardinal above a remarkable cardinal." 1. Introduction. The current paper∗ is in the tradition of the following result. Theorem 1. ([HaSh85, Theorem B]) Equiconsistent are: (1) ZFC + there is a weakly compact cardinal, and (2) ZFC + Martin's axiom (MA) + every projective set of reals is Lebesgue measurable. This theorem links a large cardinal concept with a forcing axiom (MA) and a regularity property for the projective sets of reals. We shall be interested in considering forcing axioms which are somewhat stronger than MA. In particular, we shall produce the following new result.y Theorem 2. Equiconsistent are: (1) ZFC + there is a Σ1 reflecting cardinal above a remarkable car- dinal, and (2) ZFC + the bounded proper forcing axiom (BPFA) + every projec- tive set of reals is Lebesgue measurable. 1991 Mathematics Subject Classification. Primary 03E55, 03E15. Secondary 03E35, 03E60. Key words and phrases. set theory/forcing axioms/large cardinals/descriptive set theory. ∗The author would like to thank Ilijas Farah, Ernest Schimmerling, and Boban Velickovic for sharing with him mathematical and historical insights. yThis theorem was first presented in a talk at the 6e Atelier International de Th´eorie des Ensembles in Luminy, France, on Sept 20, 2000.
    [Show full text]
  • Axiomatic Set Teory P.D.Welch
    Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L.
    [Show full text]
  • Enumeration of Finite Automata 1 Z(A) = 1
    INFOI~MATION AND CONTROL 10, 499-508 (1967) Enumeration of Finite Automata 1 FRANK HARARY AND ED PALMER Department of Mathematics, University of Michigan, Ann Arbor, Michigan Harary ( 1960, 1964), in a survey of 27 unsolved problems in graphical enumeration, asked for the number of different finite automata. Re- cently, Harrison (1965) solved this problem, but without considering automata with initial and final states. With the aid of the Power Group Enumeration Theorem (Harary and Palmer, 1965, 1966) the entire problem can be handled routinely. The method involves a confrontation of several different operations on permutation groups. To set the stage, we enumerate ordered pairs of functions with respect to the product of two power groups. Finite automata are then concisely defined as certain ordered pah's of functions. We review the enumeration of automata in the natural setting of the power group, and then extend this result to enumerate automata with initial and terminal states. I. ENUMERATION THEOREM For completeness we require a number of definitions, which are now given. Let A be a permutation group of order m = ]A I and degree d acting on the set X = Ix1, x~, -.. , xa}. The cycle index of A, denoted Z(A), is defined as follows. Let jk(a) be the number of cycles of length k in the disjoint cycle decomposition of any permutation a in A. Let al, a2, ... , aa be variables. Then the cycle index, which is a poly- nomial in the variables a~, is given by d Z(A) = 1_ ~ H ~,~(°~ . (1) ~$ a EA k=l We sometimes write Z(A; al, as, ..
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • Force to Change Large Cardinal Strength
    Force to change large cardinal strength by Erin Carmody A dissertation submitted to the Graduate Faculty in Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York. 2015 arXiv:1506.03432v2 [math.LO] 12 Jun 2015 i ii ©2015 Erin Carmody All Rights Reserved iv Abstract This dissertation includes many theorems which show how to change large cardinal prop- erties with forcing. I consider in detail the degrees of inaccessible cardinals (an analogue of the classical degrees of Mahlo cardinals) and provide new large cardinal definitions for degrees of inaccessible cardinals extending the hyper-inaccessible hierarchy. I showed that for every cardinal κ, and ordinal α, if κ is α-inaccerssible, then there is a P forcing that κ which preserves that α-inaccessible but destorys that κ is (α+1)-inaccessible. I also consider Mahlo cardinals and degrees of Mahlo cardinals. I showed that for every cardinal κ, and ordinal α, there is a notion of forcing P such that κ is still α-Mahlo in the extension, but κ is no longer (α + 1)-Mahlo. I also show that a cardinal κ which is Mahlo in the ground model can have every possible inaccessible degree in the forcing extension, but no longer be Mahlo there. The thesis includes a collection of results which give forcing notions which change large cardinal strength from weakly compact to weakly measurable, including some earlier work by others that fit this theme. I consider in detail measurable cardinals and Mitchell rank. I show how to change a class of measurable cardinals by forcing to an extension where all measurable cardinals above some fixed ordinal α have Mitchell rank below α.
    [Show full text]
  • V •. •, </>O a <#>I a • • • A<I>„ A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 2, June 1980 THE HANF NUMBER OF L„iUi JOUKO VAÄNÄNEN1 Abstract. A model of set theory is constructed in which the Hanf number of £„,„, is below the first weakly compact cardinal. This answers a question of J. Silver. 1. Introduction. J. Silver proved in [9] that if the smallest Erdös cardinal k(cS) exists, then hu u, the Hanf number of La a, exceeds k(w), and therefore also the first weakly compact cardinal. He left it as an open problem whether h could, in the absence of k(<o), be below the first weakly compact cardinal. The purpose of this paper is to give an affirmative answer to this problem. K. Kunen proved in [5] that hu u can be even larger than a measurable cardinal (indeed this always takes place in the inner model LM), but for trivial reasons hu a is below the first strongly compact cardinal. M. Magidor showed in [7] that the first measurable cardinal could be strongly compact, whence ha u could be below the first measurable cardinal. We prove this result without assuming the consistency of a strongly compact cardinal. Likewise our method yields a model in which ha u is below the first Ramsey cardinal. 2. Preliminaries. The infinitary language Lau extends the usual first order logic by allowing countable disjunctions and conjunctions *oV *i V • ■. V*„ V •. •, </>oA <#>i A • • • A<i>„A • •., and quantification over countably many variables 3x0.. .x„... <p(x0, . , x„, . ), Vx0...x„... </>(*„,. ., xn, . ). For a rigorous definition of Lu a see [1].
    [Show full text]