A Functional Hitchhiker's Guide to Hereditarily Finite Sets, Ackermann
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Linear Order on All Finite Groups
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 July 2020 doi:10.20944/preprints202006.0098.v3 CANONICAL DESCRIPTION OF GROUP THEORY: A LINEAR ORDER ON ALL FINITE GROUPS Juan Pablo Ram´ırez [email protected]; June 6, 2020 Guadalajara, Jal., Mexico´ Abstract We provide an axiomatic base for the set of natural numbers, that has been proposed as a canonical construction, and use this definition of N to find several results on finite group theory. Every finite group G, is well represented with a natural number NG; if NG = NH then H; G are in the same isomorphism class. We have a linear order, on the quotient space of isomorphism classes of finite groups, that is well behaved with respect to cardinality. If H; G are two finite groups such that j j j j ≤ ≤ n1 ⊕ n2 ⊕ · · · ⊕ nk n1 n2 ··· nk H = m < n = G , then H < Zn G Zp1 Zp2 Zpk where n = p1 p2 pk is the prime factorization of n. We find a canonical order for the objects of G and define equivalent objects of G, thus finding the automorphisms of G. The Cayley table of G takes canonical block form, and we are provided with a minimal set of independent equations that define the group. We show how to find all groups of order n, and order them. We give examples using all groups with order smaller than 10, and we find the canonical block form of the symmetry group ∆4. In the next section, we extend our results to the infinite case, which defines a real number as an infinite set of natural numbers. -
A Foundation of Finite Mathematics1
Publ. RIMS, Kyoto Univ. 12 (1977), 577-708 A Foundation of Finite Mathematics1 By Moto-o TAKAHASHI* Contents Introduction 1. Informal theory of hereditarily finite sets 2. Formal theory of hereditarily finite sets, introduction 3. The formal system PCS 4. Some basic theorems and metatheorems in PCS 5. Set theoretic operations 6. The existence and the uniqueness condition 7. Alternative versions of induction principle 8. The law of the excluded middle 9. J-formulas 10. Expansion by definition of A -predicates 11. Expansion by definition of functions 12. Finite set theory 13. Natural numbers and number theory 14. Recursion theorem 15. Miscellaneous development 16. Formalizing formal systems into PCS 17. The standard model Ria, plausibility and completeness theorems 18. Godelization and Godel's theorems 19. Characterization of primitive recursive functions 20. Equivalence to primitive recursive arithmetic 21. Conservative expansion of PRA including all first order formulas 22. Extensions of number systems Bibliography Introduction The purpose of this article is to study the foundation of finite mathe- matics from the viewpoint of hereditarily finite sets. (Roughly speaking, Communicated by S. Takasu, February 21, 1975. * Department of Mathematics, University of Tsukuba, Ibaraki 300-31, Japan. 1) This work was supported by the Sakkokai Foundation. 578 MOTO-O TAKAHASHI finite mathematics is that part of mathematics which does not depend on the existence of the actual infinity.) We shall give a formal system for this theory and develop its syntax and semantics in some extent. We shall also study the relationship between this theory and the theory of primitive recursive arithmetic, and prove that they are essentially equivalent to each other. -
Commentationes Mathematicae Universitatis Carolinae
Commentationes Mathematicae Universitatis Carolinae Antonín Sochor Metamathematics of the alternative set theory. I. Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 4, 697--722 Persistent URL: http://dml.cz/dmlcz/105962 Terms of use: © Charles University in Prague, Faculty of Mathematics and Physics, 1979 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz COMMENTATIONES MATHEMATICAE UN.VERSITATIS CAROLINAE 20, 4 (1979) METAMATHEMATICS OF THE ALTERNATIVE SET THEORY Antonin SOCHOR Abstract: In this paper the alternative set theory (AST) is described as a formal system. We show that there is an interpretation of Kelley-Morse set theory of finite sets in a very weak fragment of AST. This result is used to the formalization of metamathematics in AST. The article is the first paper of a series of papers describing metamathe- matics of AST. Key words: Alternative set theory, axiomatic system, interpretation, formalization of metamathematics, finite formula. Classification: Primary 02K10, 02K25 Secondary 02K05 This paper begins a series of articles dealing with me tamathematics of the alternative set theory (AST; see tVD). The first aim of our work (§ 1) is an introduction of AST as a formal system - we are going to formulate the axi oms of AST and define the basic notions of this theory. Do ing this we limit ourselves really to the formal side of the matter and the reader is referred to tV3 for the motivation of our axioms (although the author considers good motivati ons decisive for the whole work in AST). -
The Development of Mathematical Logic from Russell to Tarski: 1900–1935
The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives . -
A Fine Structure for the Hereditarily Finite Sets
A fine structure for the hereditarily finite sets Laurence Kirby Figure 1: A5. 1 1 Introduction. What does set theory tell us about the finite sets? This may seem an odd question, because the explication of the infinite is the raison d’ˆetre of set theory. That’s how it originated in Cantor’s work. The universalist, or reductionist, claim of set theory — its claim to provide a foundation for all of mathematics — came later. Nevertheless I propose to take seriously the picture that set theory provides of the (or a) universe and apply it to the finite sets. In any case, you cannot reach the infinite without building it upon the finite. And perhaps the finite can tell us something about the infinite? After all, the finite is all we have to go by, at least in a communicable form. The set-theoretic view of the universe of sets has different aspects that apply to the hereditarily finite sets: 1. The universalist claim, inasmuch as it presumably says that the hereditar- ily finite sets provide sufficient means to express all of finite mathematics. 2. In particular, the subsuming of arithmetic within finite set theory by the identification of the natural numbers with the finite (von Neumann) or- dinals. Although this is, in theory, not the only representation one could choose, it is hegemonic because it is the most practical and graceful. 3. The cumulative hierarchy which starts with the empty set and generates all sets by iterating the power set operator. I shall take for granted the first two items, as well as the general idea of gener- ating all sets from the empty set, but propose a different generating principle. -
MAPPING SETS and HYPERSETS INTO NUMBERS Introduction
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università degli Studi di Udine MAPPING SETS AND HYPERSETS INTO NUMBERS GIOVANNA D'AGOSTINO, EUGENIO G. OMODEO, ALBERTO POLICRITI, AND ALEXANDRU I. TOMESCU Abstract. We introduce and prove the basic properties of encodings that generalize to non-well-founded hereditarily finite sets the bijection defined by Ackermann in 1937 between hereditarily finite sets and natural numbers. Key words: Computable set theory, non-well-founded sets, bisimulation, Acker- mann bijection. Introduction \Consider all the sets that can be obtained from by applying a finite number of times··· the operations of forming singletons and of; forming binary unions; the class of all sets thus obtained coincides with the class of what are called··· in set theory the hereditarily finite··· sets, or sets of finite rank. We readily see that we can establish a one-one correspondence between natural··· numbers and hereditarily··· finite sets". This passage of [TG87, p. 217] refers to a specific correspondence, whose remarkable properties were first established in Ackermann's article [Ack37]. Among other virtues, Ackermann's bijection enables one to retrieve the full structure of a hereditarily finite set from its numeric encoding by means of a most simple recursive routine deep-rooted in the binary representation of numbers. To be more specific about this, let us call i-th set the hereditarily finite set whose encoding is i; then it holds that the j-th set belongs to the i-th set if and only if the jth bit in the base-2 representation of i is 1. -
A Theory of Particular Sets, As It Uses Open Formulas Rather Than Sequents
A Theory of Particular Sets Paul Blain Levy, University of Birmingham June 14, 2019 Abstract ZFC has sentences that quantify over all sets or all ordinals, without restriction. Some have argued that sen- tences of this kind lack a determinate meaning. We propose a set theory called TOPS, using Natural Deduction, that avoids this problem by speaking only about particular sets. 1 Introduction ZFC has long been established as a set-theoretic foundation of mathematics, but concerns about its meaningfulness have often been raised. Specifically, its use of unrestricted quantifiers seems to presuppose an absolute totality of sets. The purpose of this paper is to present a new set theory called TOPS that addresses this concern by speaking only about particular sets. Though weaker than ZFC, it is adequate for a large amount of mathematics. To explain the need for a new theory, we begin in Section 2 by surveying some basic mathematical beliefs and conceptions. Section 3 presents the language of TOPS, and Section 4 the theory itself, using Natural Deduction. Section 5 adapts the theory to allow theorems with free variables. Related work is discussed in Section 6. While TOPS is by no means the first set theory to use restricted quantifiers in order to avoid assuming a totality of sets, it is the first to do so using Natural Deduction, which turns out to be very helpful. This is apparent when TOPS is compared to a previously studied system [26] that proves essentially the same sentences but includes an inference rule that (we argue) cannot be considered truth-preserving. -
Sets As Graphs
Universita` degli Studi di Udine Dipartimento di Matematica e Informatica Dottorato di Ricerca in Informatica XXIV Ciclo - Anno Accademico 2011-2012 Ph.D. Thesis Sets as Graphs Candidate: Supervisors: Alexandru Ioan Tomescu Alberto Policriti Eugenio G. Omodeo December 2011 Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine Author's e-mail: [email protected] Author's address: Dipartimento di Matematica e Informatica Universit`adegli Studi di Udine Via delle Scienze, 206 33100 Udine Italia Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine To my parents Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine Abstract In set theory and formal logic, a set is generally an object containing nothing but other sets as elements. Not only sets enable uniformity in the formalization of the whole of mathematics, but their ease-of-use and conciseness are employed to represent information in some computer languages. Given the intrinsic nesting property of sets, it is natural to represent them as directed graphs: vertices will stand for sets, while the arc relation will mimic the membership relation. This switch of perspective is important: from a computational point of view, this led to many decidability results, while from a logical point of view, this allowed for natural extensions of the concept of set, such as that of hyperset. Interpreting a set as a directed graph gives rise to many combinatorial, structural and computational questions, having as unifying goal that of a transfer of results and techniques across the two areas. -
Download (15Mb)
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/46969 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. Supporting the Migration from Construal to Program: Rethinking Software Development by Nicolas William Pope Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Department of Computer Science August 2011 Contents List of Tables vii List of Figures viii Acknowledgments xvi Declarations xvii Abstract xviii Abbreviations xix Chapter 1 Introduction 1 1.1 Plastic Applications . .1 1.2 Plastic Software Environments . .4 1.3 A Lack of Plasticity . .6 1.4 Thesis Aims . .9 1.5 Thesis Outline . 10 Chapter 2 Background 13 2.1 End-User Development . 13 2.1.1 Principles . 14 2.1.2 Common Approaches . 17 ii 2.1.3 Existing Environments . 17 2.1.4 Guidelines . 24 2.2 Empirical Modelling . 26 2.2.1 What is Empirical Modelling? . 26 2.2.2 The Principles . 32 2.2.3 Current Tools . 35 2.2.4 An Example Model . 38 2.2.5 EM and Software Development . 41 2.3 Miscellaneous Technologies . 43 Chapter 3 Enabling Plastic Applications 45 3.1 Empirical Modelling and Plastic Applications . 45 3.2 Dimensions of Refinement . 48 3.3 Limitations of EM Tools and Concepts . -
Literaturverzeichnis
Literaturverzeichnis [1] Abian, A.: Nonstandard models for arithmetic and [14] Boole, G.; Corcoran, J.: The Laws of Thought analysis. In: Studia Logica 33 (1974), Nr. 1, S. 11–22 (Reprint). New York: Prometheus Books, 2003 [2] Ackermann, W.: Zum Hilbert’schen Aufbau der [15] Boolos, G.: A New Proof of the Gödel Incompleteness reellen Zahlen. In: Mathematische Annalen 99 (1928), Theorem. In: Notices of the American Mathematical S. 118–133 Society (1989), Nr. 36, S. 388–390 [3] Ackermann, W.: Zur Axiomatik der Mengenlehre. In: [16] Boolos, G. S.; Burgess, J. P.; Jeffrey, R. C.: Mathematische Annalen 131 (1956), August, Nr. 4, S. Computability and Logic. Cambridge: Cambridge 336–345 University Press, 2007 [4] Aliprand, J.: The Unicode Standard Version 5.0. [17] Boolos, G. S.; Jeffrey, R. C.: Computability and Boston, MA: Addison-Wesley, 2007 Logic. Cambridge: Cambridge University Press, 1989 [5] Amos, M.: Theoretical and Experimental DNA [18] The Busy Beaver Game and the Meaning of Life. Computation. Berlin, Heidelberg, New York: In: Brady, A. H.: The Universal Turing Machine: A Springer-Verlag, 2005 Half Century Survey. Oxford: Oxford University [6] Baez, J.: This Week’s Finds in Mathematical Physics. Press, 1991, S. 259–277 http://math.ucr.edu/home/baez/ [19] Brady, G.: From Peirce to Skolem: A Neglected week236.html Chapter in the History of Logic. Amsterdam: Elsevier [7] Bauer, Andrej: Portraitphoto von Dana Scott. Scienceg, 2000 (Studies in the History and Philosophy http://creativecommons.org/licenses/ of Mathematics) by-sa/2.5/. – Creative Commons License 2.5, [20] Burali-Forti, C.: Una questione sui numeri transfiniti. -
Cardinality and the Nature of Infinity
Cardinality and The Nature of Infinity Recap from Last Time Functions ● A function f is a mapping such that every value in A is associated with a single value in B. ● For every a ∈ A, there exists some b ∈ B with f(a) = b. ● If f(a) = b0 and f(a) = b1, then b0 = b1. ● If f is a function from A to B, we call A the domain of f andl B the codomain of f. ● We denote that f is a function from A to B by writing f : A → B Injective Functions ● A function f : A → B is called injective (or one-to-one) iff each element of the codomain has at most one element of the domain associated with it. ● A function with this property is called an injection. ● Formally: If f(x0) = f(x1), then x0 = x1 ● An intuition: injective functions label the objects from A using names from B. Surjective Functions ● A function f : A → B is called surjective (or onto) iff each element of the codomain has at least one element of the domain associated with it. ● A function with this property is called a surjection. ● Formally: For any b ∈ B, there exists at least one a ∈ A such that f(a) = b. ● An intuition: surjective functions cover every element of B with at least one element of A. Bijections ● A function that associates each element of the codomain with a unique element of the domain is called bijective. ● Such a function is a bijection. ● Formally, a bijection is a function that is both injective and surjective. -
Hyperbolic Pairing Function
Hyperbolic pairing function --Steve Witham 2020-03-31. DRAFT v0.5. Function v0. Check the history at the bottom. "In mathematics, a pairing function is a process to uniquely encode two natural numbers into a single natural number." 1 (https://en.wikipedia.org/wiki/Pairing_function) Georg Cantor's pairing function indexes pairs by scanning diagonals in the x, y grid. Here we define a pairing that collects (positive) integer points that hyperbolas pass through, for which the sequence in OEIS A006218 (https://oeis.org/A006218) is very helpful. This definition (one of several there)... means that, since each pair whose product is can be identified with one of 's divisors, the range has just enough room to encode those pairs. If we assign each pair a location within the range, a pairing function is defined. Contents Encoding Worked example Notes Exercise Decoding Cost in bits Calculating Exactly Approximately Bounds on Calculating the "inverse": This means search Approximating the inverse Bounds on Digression about harmonic numbers References Encoding The number of ordered pairs whose product is naturally matches the number divisors of . For example, Knowing , we can identify by encoding its first number (that is, ) into an offset within the range of encoded numbers ( 's) that belong to . We must fix the order of the primes in the factoring of in order to fix the definition of . Let's use the usual order: and are products of different powers of the same 's: But each is just , and we ignore for now. Given the 's and 's in our standard order, the following defines .