Commentationes Mathematicae Universitatis Carolinae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Sets and Pluralities
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Gustavo Fernández Díez Sets and Pluralities Revista Colombiana de Filosofía de la Ciencia, vol. IX, núm. 19, 2009, pp. 5-22, Universidad El Bosque Colombia Available in: http://www.redalyc.org/articulo.oa?id=41418349001 Revista Colombiana de Filosofía de la Ciencia, ISSN (Printed Version): 0124-4620 [email protected] Universidad El Bosque Colombia How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Sets and Pluralities1 Gustavo Fernández Díez2 Resumen En este artículo estudio el trasfondo filosófico del sistema de lógica conocido como “lógica plural”, o “lógica de cuantificadores plurales”, de aparición relativamente reciente (y en alza notable en los últimos años). En particular, comparo la noción de “conjunto” emanada de la teoría axiomática de conjuntos, con la noción de “plura- lidad” que se encuentra detrás de este nuevo sistema. Mi conclusión es que los dos son completamente diferentes en su alcance y sus límites, y que la diferencia proviene de las diferentes motivaciones que han dado lugar a cada uno. Mientras que la teoría de conjuntos es una teoría genuinamente matemática, que tiene el interés matemático como ingrediente principal, la lógica plural ha aparecido como respuesta a considera- ciones lingüísticas, relacionadas con la estructura lógica de los enunciados plurales del inglés y el resto de los lenguajes naturales. Palabras clave: conjunto, teoría de conjuntos, pluralidad, cuantificación plural, lógica plural. Abstract In this paper I study the philosophical background of the relatively recent (and in the last few years increasingly flourishing) system of logic called “plural logic”, or “logic of plural quantifiers”. -
The Iterative Conception of Set Author(S): George Boolos Reviewed Work(S): Source: the Journal of Philosophy, Vol
Journal of Philosophy, Inc. The Iterative Conception of Set Author(s): George Boolos Reviewed work(s): Source: The Journal of Philosophy, Vol. 68, No. 8, Philosophy of Logic and Mathematics (Apr. 22, 1971), pp. 215-231 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/2025204 . Accessed: 12/01/2013 10:53 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Journal of Philosophy, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Philosophy. http://www.jstor.org This content downloaded on Sat, 12 Jan 2013 10:53:17 AM All use subject to JSTOR Terms and Conditions THE JOURNALOF PHILOSOPHY VOLUME LXVIII, NO. 8, APRIL 22, I97I _ ~ ~~~~~~- ~ '- ' THE ITERATIVE CONCEPTION OF SET A SET, accordingto Cantor,is "any collection.., intoa whole of definite,well-distinguished objects... of our intuitionor thought.'1Cantor alo sdefineda set as a "many, whichcan be thoughtof as one, i.e., a totalityof definiteelements that can be combinedinto a whole by a law.'2 One mightobject to the firstdefi- nitionon the groundsthat it uses the conceptsof collectionand whole, which are notionsno betterunderstood than that of set,that there ought to be sets of objects that are not objects of our thought,that 'intuition'is a termladen with a theoryof knowledgethat no one should believe, that any object is "definite,"that there should be sets of ill-distinguishedobjects, such as waves and trains,etc., etc. -
PROBLEM SET 1. the AXIOM of FOUNDATION Early on in the Book
PROBLEM SET 1. THE AXIOM OF FOUNDATION Early on in the book (page 6) it is indicated that throughout the formal development ‘set’ is going to mean ‘pure set’, or set whose elements, elements of elements, and so on, are all sets and not items of any other kind such as chairs or tables. This convention applies also to these problems. 1. A set y is called an epsilon-minimal element of a set x if y Î x, but there is no z Î x such that z Î y, or equivalently x Ç y = Ø. The axiom of foundation, also called the axiom of regularity, asserts that any set that has any element at all (any nonempty set) has an epsilon-minimal element. Show that this axiom implies the following: (a) There is no set x such that x Î x. (b) There are no sets x and y such that x Î y and y Î x. (c) There are no sets x and y and z such that x Î y and y Î z and z Î x. 2. In the book the axiom of foundation or regularity is considered only in a late chapter, and until that point no use of it is made of it in proofs. But some results earlier in the book become significantly easier to prove if one does use it. Show, for example, how to use it to give an easy proof of the existence for any sets x and y of a set x* such that x* and y are disjoint (have empty intersection) and there is a bijection (one-to-one onto function) from x to x*, a result called the exchange principle. -
A Linear Order on All Finite Groups
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 July 2020 doi:10.20944/preprints202006.0098.v3 CANONICAL DESCRIPTION OF GROUP THEORY: A LINEAR ORDER ON ALL FINITE GROUPS Juan Pablo Ram´ırez [email protected]; June 6, 2020 Guadalajara, Jal., Mexico´ Abstract We provide an axiomatic base for the set of natural numbers, that has been proposed as a canonical construction, and use this definition of N to find several results on finite group theory. Every finite group G, is well represented with a natural number NG; if NG = NH then H; G are in the same isomorphism class. We have a linear order, on the quotient space of isomorphism classes of finite groups, that is well behaved with respect to cardinality. If H; G are two finite groups such that j j j j ≤ ≤ n1 ⊕ n2 ⊕ · · · ⊕ nk n1 n2 ··· nk H = m < n = G , then H < Zn G Zp1 Zp2 Zpk where n = p1 p2 pk is the prime factorization of n. We find a canonical order for the objects of G and define equivalent objects of G, thus finding the automorphisms of G. The Cayley table of G takes canonical block form, and we are provided with a minimal set of independent equations that define the group. We show how to find all groups of order n, and order them. We give examples using all groups with order smaller than 10, and we find the canonical block form of the symmetry group ∆4. In the next section, we extend our results to the infinite case, which defines a real number as an infinite set of natural numbers. -
Cantor-Von Neumann Set-Theory Fa Muller
Logique & Analyse 213 (2011), x–x CANTOR-VON NEUMANN SET-THEORY F.A. MULLER Abstract In this elementary paper we establish a few novel results in set the- ory; their interest is wholly foundational-philosophical in motiva- tion. We show that in Cantor-Von Neumann Set-Theory, which is a reformulation of Von Neumann's original theory of functions and things that does not introduce `classes' (let alone `proper classes'), developed in the 1920ies, both the Pairing Axiom and `half' the Axiom of Limitation are redundant — the last result is novel. Fur- ther we show, in contrast to how things are usually done, that some theorems, notably the Pairing Axiom, can be proved without invok- ing the Replacement Schema (F) and the Power-Set Axiom. Also the Axiom of Choice is redundant in CVN, because it a theorem of CVN. The philosophical interest of Cantor-Von Neumann Set- Theory, which is very succinctly indicated, lies in the fact that it is far better suited than Zermelo-Fraenkel Set-Theory as an axioma- tisation of what Hilbert famously called Cantor's Paradise. From Cantor one needs to jump to Von Neumann, over the heads of Zer- melo and Fraenkel, and then reformulate. 0. Introduction In 1928, Von Neumann published his grand axiomatisation of Cantorian Set- Theory [1925; 1928]. Although Von Neumann's motivation was thoroughly Cantorian, he did not take the concept of a set and the membership-relation as primitive notions, but the concepts of a thing and a function — for rea- sons we do not go into here. This, and Von Neumann's cumbersome nota- tion and terminology (II-things, II.I-things) are the main reasons why ini- tially his theory remained comparatively obscure. -
A Foundation of Finite Mathematics1
Publ. RIMS, Kyoto Univ. 12 (1977), 577-708 A Foundation of Finite Mathematics1 By Moto-o TAKAHASHI* Contents Introduction 1. Informal theory of hereditarily finite sets 2. Formal theory of hereditarily finite sets, introduction 3. The formal system PCS 4. Some basic theorems and metatheorems in PCS 5. Set theoretic operations 6. The existence and the uniqueness condition 7. Alternative versions of induction principle 8. The law of the excluded middle 9. J-formulas 10. Expansion by definition of A -predicates 11. Expansion by definition of functions 12. Finite set theory 13. Natural numbers and number theory 14. Recursion theorem 15. Miscellaneous development 16. Formalizing formal systems into PCS 17. The standard model Ria, plausibility and completeness theorems 18. Godelization and Godel's theorems 19. Characterization of primitive recursive functions 20. Equivalence to primitive recursive arithmetic 21. Conservative expansion of PRA including all first order formulas 22. Extensions of number systems Bibliography Introduction The purpose of this article is to study the foundation of finite mathe- matics from the viewpoint of hereditarily finite sets. (Roughly speaking, Communicated by S. Takasu, February 21, 1975. * Department of Mathematics, University of Tsukuba, Ibaraki 300-31, Japan. 1) This work was supported by the Sakkokai Foundation. 578 MOTO-O TAKAHASHI finite mathematics is that part of mathematics which does not depend on the existence of the actual infinity.) We shall give a formal system for this theory and develop its syntax and semantics in some extent. We shall also study the relationship between this theory and the theory of primitive recursive arithmetic, and prove that they are essentially equivalent to each other. -
Elements of Set Theory
Elements of set theory April 1, 2014 ii Contents 1 Zermelo{Fraenkel axiomatization 1 1.1 Historical context . 1 1.2 The language of the theory . 3 1.3 The most basic axioms . 4 1.4 Axiom of Infinity . 4 1.5 Axiom schema of Comprehension . 5 1.6 Functions . 6 1.7 Axiom of Choice . 7 1.8 Axiom schema of Replacement . 9 1.9 Axiom of Regularity . 9 2 Basic notions 11 2.1 Transitive sets . 11 2.2 Von Neumann's natural numbers . 11 2.3 Finite and infinite sets . 15 2.4 Cardinality . 17 2.5 Countable and uncountable sets . 19 3 Ordinals 21 3.1 Basic definitions . 21 3.2 Transfinite induction and recursion . 25 3.3 Applications with choice . 26 3.4 Applications without choice . 29 3.5 Cardinal numbers . 31 4 Descriptive set theory 35 4.1 Rational and real numbers . 35 4.2 Topological spaces . 37 4.3 Polish spaces . 39 4.4 Borel sets . 43 4.5 Analytic sets . 46 4.6 Lebesgue's mistake . 48 iii iv CONTENTS 5 Formal logic 51 5.1 Propositional logic . 51 5.1.1 Propositional logic: syntax . 51 5.1.2 Propositional logic: semantics . 52 5.1.3 Propositional logic: completeness . 53 5.2 First order logic . 56 5.2.1 First order logic: syntax . 56 5.2.2 First order logic: semantics . 59 5.2.3 Completeness theorem . 60 6 Model theory 67 6.1 Basic notions . 67 6.2 Ultraproducts and nonstandard analysis . 68 6.3 Quantifier elimination and the real closed fields . -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
A Fine Structure for the Hereditarily Finite Sets
A fine structure for the hereditarily finite sets Laurence Kirby Figure 1: A5. 1 1 Introduction. What does set theory tell us about the finite sets? This may seem an odd question, because the explication of the infinite is the raison d’ˆetre of set theory. That’s how it originated in Cantor’s work. The universalist, or reductionist, claim of set theory — its claim to provide a foundation for all of mathematics — came later. Nevertheless I propose to take seriously the picture that set theory provides of the (or a) universe and apply it to the finite sets. In any case, you cannot reach the infinite without building it upon the finite. And perhaps the finite can tell us something about the infinite? After all, the finite is all we have to go by, at least in a communicable form. The set-theoretic view of the universe of sets has different aspects that apply to the hereditarily finite sets: 1. The universalist claim, inasmuch as it presumably says that the hereditar- ily finite sets provide sufficient means to express all of finite mathematics. 2. In particular, the subsuming of arithmetic within finite set theory by the identification of the natural numbers with the finite (von Neumann) or- dinals. Although this is, in theory, not the only representation one could choose, it is hegemonic because it is the most practical and graceful. 3. The cumulative hierarchy which starts with the empty set and generates all sets by iterating the power set operator. I shall take for granted the first two items, as well as the general idea of gener- ating all sets from the empty set, but propose a different generating principle. -
A Functional Hitchhiker's Guide to Hereditarily Finite Sets, Ackermann
A Functional Hitchhiker’s Guide to Hereditarily Finite Sets, Ackermann Encodings and Pairing Functions – unpublished draft – Paul Tarau Department of Computer Science and Engineering University of North Texas [email protected] Abstract interest in various fields, from representing structured data The paper is organized as a self-contained literate Haskell in databases (Leontjev and Sazonov 2000) to reasoning with program that implements elements of an executable fi- sets and set constraints in a Logic Programming framework nite set theory with focus on combinatorial generation and (Dovier et al. 2000; Piazza and Policriti 2004; Dovier et al. arithmetic encodings. The code, tested under GHC 6.6.1, 2001). is available at http://logic.csci.unt.edu/tarau/ The Universe of Hereditarily Finite Sets is built from the research/2008/fSET.zip. empty set (or a set of Urelements) by successively applying We introduce ranking and unranking functions generaliz- powerset and set union operations. A surprising bijection, ing Ackermann’s encoding to the universe of Hereditarily Fi- discovered by Wilhelm Ackermann in 1937 (Ackermann nite Sets with Urelements. Then we build a lazy enumerator 1937; Abian and Lamacchia 1978; Kaye and Wong 2007) for Hereditarily Finite Sets with Urelements that matches the from Hereditarily Finite Sets to Natural Numbers, was the unranking function provided by the inverse of Ackermann’s original trigger for our work on building in a mathematically encoding and we describe functors between them resulting elegant programming language, a concise and executable in arithmetic encodings for powersets, hypergraphs, ordinals hereditarily finite set theory. The arbitrary size of the data and choice functions. -
MAPPING SETS and HYPERSETS INTO NUMBERS Introduction
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università degli Studi di Udine MAPPING SETS AND HYPERSETS INTO NUMBERS GIOVANNA D'AGOSTINO, EUGENIO G. OMODEO, ALBERTO POLICRITI, AND ALEXANDRU I. TOMESCU Abstract. We introduce and prove the basic properties of encodings that generalize to non-well-founded hereditarily finite sets the bijection defined by Ackermann in 1937 between hereditarily finite sets and natural numbers. Key words: Computable set theory, non-well-founded sets, bisimulation, Acker- mann bijection. Introduction \Consider all the sets that can be obtained from by applying a finite number of times··· the operations of forming singletons and of; forming binary unions; the class of all sets thus obtained coincides with the class of what are called··· in set theory the hereditarily finite··· sets, or sets of finite rank. We readily see that we can establish a one-one correspondence between natural··· numbers and hereditarily··· finite sets". This passage of [TG87, p. 217] refers to a specific correspondence, whose remarkable properties were first established in Ackermann's article [Ack37]. Among other virtues, Ackermann's bijection enables one to retrieve the full structure of a hereditarily finite set from its numeric encoding by means of a most simple recursive routine deep-rooted in the binary representation of numbers. To be more specific about this, let us call i-th set the hereditarily finite set whose encoding is i; then it holds that the j-th set belongs to the i-th set if and only if the jth bit in the base-2 representation of i is 1. -
Math 310 Class Notes 1: Axioms of Set Theory
MATH 310 CLASS NOTES 1: AXIOMS OF SET THEORY Intuitively, we think of a set as an organization and an element be- longing to a set as a member of the organization. Accordingly, it also seems intuitively clear that (1) when we collect all objects of a certain kind the collection forms an organization, i.e., forms a set, and, moreover, (2) it is natural that when we collect members of a certain kind of an organization, the collection is a sub-organization, i.e., a subset. Item (1) above was challenged by Bertrand Russell in 1901 if we accept the natural item (2), i.e., we must be careful when we use the word \all": (Russell Paradox) The collection of all sets is not a set! Proof. Suppose the collection of all sets is a set S. Consider the subset U of S that consists of all sets x with the property that each x does not belong to x itself. Now since U is a set, U belongs to S. Let us ask whether U belongs to U itself. Since U is the collection of all sets each of which does not belong to itself, thus if U belongs to U, then as an element of the set U we must have that U does not belong to U itself, a contradiction. So, it must be that U does not belong to U. But then U belongs to U itself by the very definition of U, another contradiction. The absurdity results because we assume S is a set.