Hypergraph Isomorphism for Groups with Restricted Composition Factors Daniel Neuen Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
[email protected] Abstract We consider the isomorphism problem for hypergraphs taking as input two hypergraphs over the same set of vertices V and a permutation group Γ over domain V , and asking whether there is a permutation γ ∈ Γ that proves the two hypergraphs to be isomorphic. We show that for input groups, all of whose composition factors are isomorphic to a subgroup of the symmetric group on c d points, this problem can be solved in time (n + m)O((log d) ) for some absolute constant c where n denotes the number of vertices and m the number of hyperedges. In particular, this gives the currently fastest isomorphism test for hypergraphs in general. The previous best algorithm for the above problem due to Schweitzer and Wiebking (STOC 2019) runs in time nO(d)mO(1). As an application of this result, we obtain, for example, an algorithm testing isomorphism of O((log h)c) graphs excluding K3,h as a minor in time n . In particular, this gives an isomorphism test c for graphs of Euler genus at most g running in time nO((log g) ). 2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms; Mathematics of computing → Graph algorithms; Mathematics of computing → Combinatorial algorithms; Mathematics of computing → Graphs and surfaces Keywords and phrases graph isomorphism, groups with restricted composition factors, hypergraphs, bounded genus graphs Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.88 Category Track A: Algorithms, Complexity and Games Related Version A full version of the paper is available at https://arxiv.org/abs/2002.06997.