Math 101 B-Packet

Total Page:16

File Type:pdf, Size:1020Kb

Math 101 B-Packet Math 101 B-Packet Scott Rome Winter 2012-13 1 Redefining functions This quarter we have defined a function as a rule which assigns exactly one output to each input, and so far we have been happy with this definition. Unfortunately, this way of thinking of a function is insufficient as things become more complicated in mathematics. For a better understanding of a function, we will first need to define it better. Definition 1.1. Let X; Y be any sets. A function f : X ! Y is a rule which assigns every element of X to an element of Y . The sets X and Y are called the domain and codomain of f respectively. x f(x) y Figure 1: This function f : X ! Y maps x 7! f(x). The green circle indicates the range of the function. Notice y is in the codomain, but f does not map to it. Remark 1.2. It is necessary to define the rule, the domain, and the codomain to define a function. Thus far in the class, we have been \sloppy" when working with functions. Remark 1.3. Notice how in the definition, the function is defined by three things: the rule, the domain, and the codomain. That means you can define functions that seem to be the same, but are actually different as we will see. The domain of a function can be thought of as the set of all inputs (that is, everything in the domain will be mapped somewhere by the function). On the other hand, the codomain of a function is the set of all possible outputs, and a function may not necessarily map to every element of the codomain. Notice how the codomain is not the same as what we defined as the range of a function. In class, we defined the range of a function to be every point the function maps to. We will explore this in the examples below. 1 Example 1.4. Consider two functions: f : R ! R and g : [0; 1] ! R defined by f(x) = x and g(x) = x. These two functions are different, because their domains are different, even if f(x) = g(x) when x 2 [0; 1]. The way to see that is at x = 2, f(2) = 2 but g(2) is undefined. 2 Example 1.5. Let f : R ! R by f(x) = x (here X = Y = R.) The codomain of f is R, but the range of f is [0; 1). The domain is of course, also R. Example 1.6. Let colors be the set of all possible colors. If g : f1; 2; 3g ! colors is defined g g g by 1 7! blue, 2 7! yellow, and 3 7! red, the range of g is fred; blue; yellowg. The domain of g is f1; 2; 3g and the codomain is colors. Now that we have clarified the new definitions, we will introduce more. Definition 1.7. A function f : X ! Y is one-to-one provided each element of the range has exactly one element mapping to it. That is for a; b 2 X, f(a) = f(b) implies a = b. (Recall a; b 2 X means a and b are arbitrary elements of X. That means they could be ANY element in the domain.) Remark 1.8. It may not be immediately obvious why the second part of the definition is a restatement of the first. However it is true that the second statement fully characterizes what it means for exactly one element to map to each element in the range. If this is not clear, sit down and think about it in a quiet place. Example 1.9. The function defined by Figure 1 is one-to-one. Example 1.10. The function pictured in Figure 2 is not one to one. a f(a) = f(b) b Figure 2: f(a) = f(b) but a 6= b Sometimes, one must prove a function is not one-to-one. For that we need to talk about a strategy to prove this. 2 Proposition 1.11. The function f : R ! R defined by f(x) = x is not one-to-one. Proof Strategy 1.12. To prove something is not one-to-one. You have to find two elements of the domain that map to the same thing. Proof. Consider x = ±1. Then f(1) = f(−1) = 1 but 1 6= −1. Thus two elements map to 1 and so f is not one-to-one. However, if we change the domain and create a new (similar function), it will be one-to-one: 2 2 Proposition 1.13. The function f : [0; 1) ! R defined by f(x) = x is one-to-one. Proof Strategy 1.14. To prove something is one-to-one. You first assume you have two arbitrary elements in the domain (say x and y). You then look at the equation f(x) = f(y) and try to algebraically manipulate it until you show x = y. Sometimes this can be very tricky. Proof. This time will be a little trickier. Assume x; y 2 [0; 1) (we do not necessarily mean they are the same point!). Then if f(x) = f(y) this implies x2 = y2. Therefore by subtracting y2 from both sides we see 0 = x2 − y2 = (x − y)(x + y): Now there are two cases: if (x + y) = 0, then x = −y: (1.1) However, x and y were both assumed to be in [0; 1) and therefore both must be positive. But (1:1) says that if y is positive, then x is negative. This is impossible, and so this case can not happen. Therefore, we know the other case is true. In particular, it must be the case that x − y = 0. In other words: x = y. Thus f(x) = f(y) implies x = y. However this was only for our choice of x and y, but since x and y were arbitrary (i.e. they could be ANYTHING) in the domain, this proof holds for every element of the domain, and so f satisfies the definition of one-to-one and is therefore one-to-one. Remark 1.15. What you have just finished reading is (most likely) your first abstract proof. Congratulations! Notice to prove the proposition, we had to show the definition of one-to-one applies to f. To do that, we assumed we had two points (that not necessarily the same) mapping to the same thing, and showed by some trickery that in fact the two points must be the same point! This may seem a little mystical at first, but the more you do it, the less weird it feels. Now that we are experts on this, we can move to another definition. Definition 1.16. A function is onto if it maps an element of the domain to every element of the codomain. Remark 1.17. Remember that the range is every element the function maps to. If the function maps to every element of the codomain, that means that the codomain = range! For most of the class, we always implied the codomain WAS the range for the functions we worked with (and we can choose that, as we choose the codomain when we define a function). Example 1.18. The function in Figure 1 is not onto. Example 1.19. The function g : R ! R given by g(x) = x is onto. For any real number you pick, that number maps to itself! For example, if you say 17, then g(17) = 17. Thus you can see how g can map to every element of the codomain. 3 Figure 3: An example of an onto function. x Example 1.20. Let f : R ! R be f(x) = e . Then f is not onto because it can not map to any negative number (or 0!). 2 Example 1.21. The function f : [0; 1) ! R defined by f(x) = x is not onto as the square root cannot map to negative numbers (as a function). However if we restrict the codomain of the previous function, it will be onto: Proposition 1.22. However, g : [0; 1) ! [0; 1) defined by g(x) = x2 is onto. Proof Strategy 1.23. To prove something is onto, you must pick an arbitrary element y in the codomain, and then construct an x that maps to it. Normally, we assume there is such an x, and then set f(x) = y. Then we solve for x. If we run into a contradiction (for example 0 = 1), then we know there is no x that maps to that specific y. Proof. We must show that for any element y in the codomain, we can find an x so that p g(x) = y. Let y 2 [0; 1) (the codomain). Then observe that the positive y is in the domain and maps to y, since p p f( y) = ( y)2 = y: Therefore since y was an arbitrary element in the codomain, f can map to anything in the codomain and so f is onto. We conclude this section with a discussion of the inverse of a function. If you recall we had the definition of inverse functions when we defined ex and ln x. We will now give a more formal definition. Definition 1.24. Let f : X ! Y be a function. The inverse is the unique function f −1 : Y ! X is defined such that for any x 2 X and y 2 Y , f(f −1(y)) = y and f −1(f(x)) = x: Remark 1.25.
Recommended publications
  • A Proof of Cantor's Theorem
    Cantor’s Theorem Joe Roussos 1 Preliminary ideas Two sets have the same number of elements (are equinumerous, or have the same cardinality) iff there is a bijection between the two sets. Mappings: A mapping, or function, is a rule that associates elements of one set with elements of another set. We write this f : X ! Y , f is called the function/mapping, the set X is called the domain, and Y is called the codomain. We specify what the rule is by writing f(x) = y or f : x 7! y. e.g. X = f1; 2; 3g;Y = f2; 4; 6g, the map f(x) = 2x associates each element x 2 X with the element in Y that is double it. A bijection is a mapping that is injective and surjective.1 • Injective (one-to-one): A function is injective if it takes each element of the do- main onto at most one element of the codomain. It never maps more than one element in the domain onto the same element in the codomain. Formally, if f is a function between set X and set Y , then f is injective iff 8a; b 2 X; f(a) = f(b) ! a = b • Surjective (onto): A function is surjective if it maps something onto every element of the codomain. It can map more than one thing onto the same element in the codomain, but it needs to hit everything in the codomain. Formally, if f is a function between set X and set Y , then f is surjective iff 8y 2 Y; 9x 2 X; f(x) = y Figure 1: Injective map.
    [Show full text]
  • Linear Transformation (Sections 1.8, 1.9) General View: Given an Input, the Transformation Produces an Output
    Linear Transformation (Sections 1.8, 1.9) General view: Given an input, the transformation produces an output. In this sense, a function is also a transformation. 1 4 3 1 3 Example. Let A = and x = 1 . Describe matrix-vector multiplication Ax 2 0 5 1 1 1 in the language of transformation. 1 4 3 1 31 5 Ax b 2 0 5 11 8 1 Vector x is transformed into vector b by left matrix multiplication Definition and terminologies. Transformation (or function or mapping) T from Rn to Rm is a rule that assigns to each vector x in Rn a vector T(x) in Rm. • Notation: T: Rn → Rm • Rn is the domain of T • Rm is the codomain of T • T(x) is the image of vector x • The set of all images T(x) is the range of T • When T(x) = Ax, A is a m×n size matrix. Range of T = Span{ column vectors of A} (HW1.8.7) See class notes for other examples. Linear Transformation --- Existence and Uniqueness Questions (Section 1.9) Definition 1: T: Rn → Rm is onto if each b in Rm is the image of at least one x in Rn. • i.e. codomain Rm = range of T • When solve T(x) = b for x (or Ax=b, A is the standard matrix), there exists at least one solution (Existence question). Definition 2: T: Rn → Rm is one-to-one if each b in Rm is the image of at most one x in Rn. • i.e. When solve T(x) = b for x (or Ax=b, A is the standard matrix), there exists either a unique solution or none at all (Uniqueness question).
    [Show full text]
  • An Update on the Four-Color Theorem Robin Thomas
    thomas.qxp 6/11/98 4:10 PM Page 848 An Update on the Four-Color Theorem Robin Thomas very planar map of connected countries the five-color theorem (Theorem 2 below) and can be colored using four colors in such discovered what became known as Kempe chains, a way that countries with a common and Tait found an equivalent formulation of the boundary segment (not just a point) re- Four-Color Theorem in terms of edge 3-coloring, ceive different colors. It is amazing that stated here as Theorem 3. Esuch a simply stated result resisted proof for one The next major contribution came in 1913 from and a quarter centuries, and even today it is not G. D. Birkhoff, whose work allowed Franklin to yet fully understood. In this article I concentrate prove in 1922 that the four-color conjecture is on recent developments: equivalent formulations, true for maps with at most twenty-five regions. The a new proof, and progress on some generalizations. same method was used by other mathematicians to make progress on the four-color problem. Im- Brief History portant here is the work by Heesch, who developed The Four-Color Problem dates back to 1852 when the two main ingredients needed for the ultimate Francis Guthrie, while trying to color the map of proof—“reducibility” and “discharging”. While the the counties of England, noticed that four colors concept of reducibility was studied by other re- sufficed. He asked his brother Frederick if it was searchers as well, the idea of discharging, crucial true that any map can be colored using four col- for the unavoidability part of the proof, is due to ors in such a way that adjacent regions (i.e., those Heesch, and he also conjectured that a suitable de- sharing a common boundary segment, not just a velopment of this method would solve the Four- point) receive different colors.
    [Show full text]
  • Basic Structures: Sets, Functions, Sequences, and Sums 2-2
    CHAPTER Basic Structures: Sets, Functions, 2 Sequences, and Sums 2.1 Sets uch of discrete mathematics is devoted to the study of discrete structures, used to represent discrete objects. Many important discrete structures are built using sets, which 2.2 Set Operations M are collections of objects. Among the discrete structures built from sets are combinations, 2.3 Functions unordered collections of objects used extensively in counting; relations, sets of ordered pairs that represent relationships between objects; graphs, sets of vertices and edges that connect 2.4 Sequences and vertices; and finite state machines, used to model computing machines. These are some of the Summations topics we will study in later chapters. The concept of a function is extremely important in discrete mathematics. A function assigns to each element of a set exactly one element of a set. Functions play important roles throughout discrete mathematics. They are used to represent the computational complexity of algorithms, to study the size of sets, to count objects, and in a myriad of other ways. Useful structures such as sequences and strings are special types of functions. In this chapter, we will introduce the notion of a sequence, which represents ordered lists of elements. We will introduce some important types of sequences, and we will address the problem of identifying a pattern for the terms of a sequence from its first few terms. Using the notion of a sequence, we will define what it means for a set to be countable, namely, that we can list all the elements of the set in a sequence.
    [Show full text]
  • Fibonacci, Kronecker and Hilbert NKS 2007
    Fibonacci, Kronecker and Hilbert NKS 2007 Klaus Sutner Carnegie Mellon University www.cs.cmu.edu/∼sutner NKS’07 1 Overview • Fibonacci, Kronecker and Hilbert ??? • Logic and Decidability • Additive Cellular Automata • A Knuth Question • Some Questions NKS’07 2 Hilbert NKS’07 3 Entscheidungsproblem The Entscheidungsproblem is solved when one knows a procedure by which one can decide in a finite number of operations whether a given logical expression is generally valid or is satisfiable. The solution of the Entscheidungsproblem is of fundamental importance for the theory of all fields, the theorems of which are at all capable of logical development from finitely many axioms. D. Hilbert, W. Ackermann Grundzuge¨ der theoretischen Logik, 1928 NKS’07 4 Model Checking The Entscheidungsproblem for the 21. Century. Shift to computer science, even commercial applications. Fix some suitable logic L and collection of structures A. Find efficient algorithms to determine A |= ϕ for any structure A ∈ A and sentence ϕ in L. Variants: fix ϕ, fix A. NKS’07 5 CA as Structures Discrete dynamical systems, minimalist description: Aρ = hC, i where C ⊆ ΣZ is the space of configurations of the system and is the “next configuration” relation induced by the local map ρ. Use standard first order logic (either relational or functional) to describe properties of the system. NKS’07 6 Some Formulae ∀ x ∃ y (y x) ∀ x, y, z (x z ∧ y z ⇒ x = y) ∀ x ∃ y, z (y x ∧ z x ∧ ∀ u (u x ⇒ u = y ∨ u = z)) There is no computability requirement for configurations, in x y both x and y may be complicated.
    [Show full text]
  • Domain and Range of a Function
    4.1 Domain and Range of a Function How can you fi nd the domain and range of STATES a function? STANDARDS MA.8.A.1.1 MA.8.A.1.5 1 ACTIVITY: The Domain and Range of a Function Work with a partner. The table shows the number of adult and child tickets sold for a school concert. Input Number of Adult Tickets, x 01234 Output Number of Child Tickets, y 86420 The variables x and y are related by the linear equation 4x + 2y = 16. a. Write the equation in function form by solving for y. b. The domain of a function is the set of all input values. Find the domain of the function. Domain = Why is x = 5 not in the domain of the function? 1 Why is x = — not in the domain of the function? 2 c. The range of a function is the set of all output values. Find the range of the function. Range = d. Functions can be described in many ways. ● by an equation ● by an input-output table y 9 ● in words 8 ● by a graph 7 6 ● as a set of ordered pairs 5 4 Use the graph to write the function 3 as a set of ordered pairs. 2 1 , , ( , ) ( , ) 0 09321 45 876 x ( , ) , ( , ) , ( , ) 148 Chapter 4 Functions 2 ACTIVITY: Finding Domains and Ranges Work with a partner. ● Copy and complete each input-output table. ● Find the domain and range of the function represented by the table. 1 a. y = −3x + 4 b. y = — x − 6 2 x −2 −10 1 2 x 01234 y y c.
    [Show full text]
  • Functions and Inverses
    Functions and Inverses CS 2800: Discrete Structures, Spring 2015 Sid Chaudhuri Recap: Relations and Functions ● A relation between sets A !the domain) and B !the codomain" is a set of ordered pairs (a, b) such that a ∈ A, b ∈ B !i.e. it is a subset o# A × B" Cartesian product – The relation maps each a to the corresponding b ● Neither all possible a%s, nor all possible b%s, need be covered – Can be one-one, one&'an(, man(&one, man(&man( Alice CS 2800 Bob A Carol CS 2110 B David CS 3110 Recap: Relations and Functions ● ) function is a relation that maps each element of A to a single element of B – Can be one-one or man(&one – )ll elements o# A must be covered, though not necessaril( all elements o# B – Subset o# B covered b( the #unction is its range/image Alice Balch Bob A Carol Jameson B David Mews Recap: Relations and Functions ● Instead of writing the #unction f as a set of pairs, e usually speci#y its domain and codomain as: f : A → B * and the mapping via a rule such as: f (Heads) = 0.5, f (Tails) = 0.5 or f : x ↦ x2 +he function f maps x to x2 Recap: Relations and Functions ● Instead of writing the #unction f as a set of pairs, e usually speci#y its domain and codomain as: f : A → B * and the mapping via a rule such as: f (Heads) = 0.5, f (Tails) = 0.5 2 or f : x ↦ x f(x) ● Note: the function is f, not f(x), – f(x) is the value assigned b( f the #unction f to input x x Recap: Injectivity ● ) function is injective (one-to-one) if every element in the domain has a unique i'age in the codomain – +hat is, f(x) = f(y) implies x = y Albany NY New York A MA Sacramento B CA Boston ..
    [Show full text]
  • Adaptive Lower Bound for Testing Monotonicity on the Line
    Adaptive Lower Bound for Testing Monotonicity on the Line Aleksandrs Belovs∗ Abstract In the property testing model, the task is to distinguish objects possessing some property from the objects that are far from it. One of such properties is monotonicity, when the objects are functions from one poset to another. This is an active area of research. In this paper we study query complexity of ε-testing monotonicity of a function f :[n] → [r]. All our lower bounds are for adaptive two-sided testers. log r • We prove a nearly tight lower bound for this problem in terms of r. TheboundisΩ log log r when ε =1/2. No previous satisfactory lower bound in terms of r was known. • We completely characterise query complexity of this problem in terms of n for smaller values of ε. The complexity is Θ ε−1 log(εn) . Apart from giving the lower bound, this improves on the best known upper bound. Finally, we give an alternative proof of the Ω(ε−1d log n−ε−1 log ε−1) lower bound for testing monotonicity on the hypergrid [n]d due to Chakrabarty and Seshadhri (RANDOM’13). 1 Introduction The framework of property testing was formulated by Rubinfeld and Sudan [19] and Goldreich et al. [16]. A property testing problem is specified by a property P, which is a class of functions mapping some finite set D into some finite set R, and proximity parameter ε, which is a real number between 0 and 1. An ε-tester is a bounded-error randomised query algorithm which, given oracle access to a function f : D → R, distinguishes between the case when f belongs to P and the case when f is ε-far from P.
    [Show full text]
  • Basic Concepts of Set Theory, Functions and Relations 1. Basic
    Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • Injection, Surjection, and Linear Maps
    Math 108a Professor: Padraic Bartlett Lecture 12: Injection, Surjection and Linear Maps Week 4 UCSB 2013 Today's lecture is centered around the ideas of injection and surjection as they relate to linear maps. While some of you may have seen these terms before in Math 8, many of you indicated in class that a quick refresher talk on the concepts would be valuable. We do this here! 1 Injection and Surjection: Definitions Definition. A function f with domain A and codomain B, formally speaking, is a collec- tion of pairs (a; b), with a 2 A and b 2 B; such that there is exactly one pair (a; b) for every a 2 A. Informally speaking, a function f : A ! B is just a map which takes each element in A to an element in B. Examples. • f : Z ! N given by f(n) = 2jnj + 1 is a function. • g : N ! N given by g(n) = 2jnj + 1 is also a function. It is in fact a different function than f, because it has a different domain! 2 • j : N ! N defined by h(n) = n is yet another function • The function j depicted below by the three arrows is a function, with domain f1; λ, 'g and codomain f24; γ; Zeusg : 1 24 =@ λ ! γ ' Zeus It sends the element 1 to γ, and the elements λ, ' to 24. In other words, h(1) = γ, h(λ) = 24; and h(') = 24. Definition. We call a function f injective if it never hits the same point twice { i.e.
    [Show full text]
  • Module 1 Lecture Notes
    Module 1 Lecture Notes Contents 1.1 Identifying Functions.............................1 1.2 Algebraically Determining the Domain of a Function..........4 1.3 Evaluating Functions.............................6 1.4 Function Operations..............................7 1.5 The Difference Quotient...........................9 1.6 Applications of Function Operations.................... 10 1.7 Determining the Domain and Range of a Function Graphically.... 12 1.8 Reading the Graph of a Function...................... 14 1.1 Identifying Functions In previous classes, you should have studied a variety basic functions. For example, 1 p f(x) = 3x − 5; g(x) = 2x2 − 1; h(x) = ; j(x) = 5x + 2 x − 5 We will begin this course by studying functions and their properties. As the course progresses, we will study inverse, composite, exponential, logarithmic, polynomial and rational functions. Math 111 Module 1 Lecture Notes Definition 1: A relation is a correspondence between two variables. A relation can be ex- pressed through a set of ordered pairs, a graph, a table, or an equation. A set containing ordered pairs (x; y) defines y as a function of x if and only if no two ordered pairs in the set have the same x-coordinate. In other words, every input maps to exactly one output. We write y = f(x) and say \y is a function of x." For the function defined by y = f(x), • x is the independent variable (also known as the input) • y is the dependent variable (also known as the output) • f is the function name Example 1: Determine whether or not each of the following represents a function. Table 1.1 Chicken Name Egg Color Emma Turquoise Hazel Light Brown George(ia) Chocolate Brown Isabella White Yvonne Light Brown (a) The set of ordered pairs of the form (chicken name, egg color) shown in Table 1.1.
    [Show full text]