SWCHR BULLETIN Volume 6, Issue 3 Fall 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
REPTILIA: SQUAMATA: CROTALIDAE Cerrophidion Tzotzilorum
880.1 REPTILIA: SQUAMATA: CROTALIDAE Cerrophidion tzotzilorum Catalogue of American Amphibians and Reptiles. Jadin, R.C. 2010. Cerrophidion tzotzilorum. Cerrophidion tzotzilorum (Campbell) Tzotzil Montane Pitviper Nauyaca del frío, víbora Bothrops nummifer mexicanus: McCoy and Van Horn 1962:186 (part). Cerrophidion godmani: Auth, Smith, Brown, and Lintz 2000:73 (part). _ FIGURE 2. Photograph of the hemipenis of the holotype Bothrops tzotzilorum Campbell 1985:48. Type locali- _ ty, “10.9 km ESE San Cristóbal de Las Casas, of Cerrophidion tzotzilorum (UTA R 9641); (A) sulcate view, Chiapas, Mexico, elevation 2320 m.” Holotype, (B) asulcate view. Amphibian and Reptile Diversity Research Cen- ter, University of Texas at Arlington (UTA) R_9641, • DIAGNOSIS. This species is parapatric with C. an adult male collected by J.A. Campbell on 8 godmani with few reports of sympatry (Campbell June 1979. 1985). It differs from C. godmani in having shorter Porthidium tzotzilorum: Campbell and Lamar 1989: and more numerous dorsal and lateral body blotches, 264. generally lower ventral scale counts, and fewer den- Cerrophidion tzotzilorum: Campbell and Lamar 1992: tary and pterygoid teeth. 24. • DESCRIPTIONS. The most complete descrip- • CONTENT. No subspecies are recognized. tions of the external morphology are in Campbell (1985, 1988), Campbell and Lamar (1989, 2004), and • DEFINITION. Cerrophidion tzotzilorum may be the Jadin (in press). smallest species of pitviper in the New World (Camp- bell and Lamar 2004); adults probably do not exceed • ILLUSTRATIONS. In the original description, 50 cm in total length. Coloration may be a dark gray- Campbell (1985) provided sketches of both the left ish brown or rust. A darker gray or brown zig_zag pat- side and dorsal views of the head of the holotype, tern extends from the neck down the entire length of along with a sulcate view of the left hemipene. -
Zoological Journal of the Linnean Society 163:943–958
Zoological Journal of the Linnean Society, 2011, 163, 943–958. With 6 figures Unravelling a tangle of Mexican serpents: a systematic revision of highland pitviperszoj_748 943..958 ROBERT C. JADIN1,2*, ERIC N. SMITH2 and JONATHAN A. CAMPBELL2 1Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, N122 Ramaley campus box 334, Boulder, CO 80309, USA 2Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas at Arlington, Box 19498, Arlington, TX 76019, USA Received 3 August 2010; revised 4 March 2011; accepted for publication 9 March 2011 As most recently recognized, the name Cerrophidion barbouri Dunn, 1919, refers to a highland species of pitviper endemic to Guerrero, Mexico, of which Agkistrodon browni Shreve, 1938, is considered a junior synonym. This species is rarely collected and prior to recent decades it was known from only a few specimens. A careful re-examination of nearly all known specimens of C. barbouri and the type series of A. browni reveals that both names represent valid species and we therefore resurrect A. browni. Both species are extremely variable with respect to cephalic scalation and colour pattern, which has previously confounded efforts to identify them. We provide phylogenetic analyses using both Bayesian and maximum parsimony criteria of New World pitvipers to investigate the phylogenetic position of A. browni and C. barbouri. Our phylogenetic tree, based on 2235 bp of mitochondrial data [12S, 16S, cytochrome b (cyt b), NADH dehydrogenase subunit 4 (ND4)], strongly supports a clade consisting of A. browni, C. barbouri, and Ophryacus melanurus, which has a distant sister relationship to Ophryacus undulatus. -
Table S3.1. Habitat Use of Sampled Snakes. Taxonomic Nomenclature
Table S3.1. Habitat use of sampled snakes. Taxonomic nomenclature follows the current classification indexed in the Reptile Database ( http://www.reptile-database.org/ ). For some species, references may reflect outdated taxonomic status. Individual species are coded for habitat association according to Table 3.1. References for this table are listed below. Habitat use for species without a reference were inferred from sister taxa. Broad Habitat Specific Habit Species Association Association References Acanthophis antarcticus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis laevis Semifossorial Terrestrial-Fossorial O'Shea, 1996 Acanthophis praelongus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis pyrrhus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis rugosus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis wellsi Semifossorial Terrestrial-Fossorial Cogger, 2014 Achalinus meiguensis Semifossorial Subterranean-Debris Wang et al., 2009 Achalinus rufescens Semifossorial Subterranean-Debris Das, 2010 Acrantophis dumerili Terrestrial Terrestrial Andreone & Luiselli, 2000 Acrantophis madagascariensis Terrestrial Terrestrial Andreone & Luiselli, 2000 Acrochordus arafurae Aquatic-Mixed Intertidal Murphy, 2012 Acrochordus granulatus Aquatic-Mixed Intertidal Lang & Vogel, 2005 Acrochordus javanicus Aquatic-Mixed Intertidal Lang & Vogel, 2005 Acutotyphlops kunuaensis Fossorial Subterranean-Burrower Hedges et al., 2014 Acutotyphlops subocularis Fossorial Subterranean-Burrower Hedges et al., 2014 -
A Systematic Reassessment of Cerrophidion Godmani
Zoologica Scripta Cryptic diversity in disjunct populations of Middle American Montane Pitvipers: a systematic reassessment of Cerrophidion godmani ROBERT C. JADIN,JOSIAH H. TOWNSEND,TODD A. CASTOE &JONATHAN A. CAMPBELL Submitted: 13 October 2011 Jadin, R.C., Townsend, J.H., Castoe, T.A. & Campbell, J.A. (2012). Cryptic diversity in Accepted: 10 April 2012 disjunct populations of Middle American Montane Pitvipers: a systematic reassessment of doi:10.1111/j.1463-6409.2012.00547.x Cerrophidion godmani. —Zoologica Scripta, 00, 000–000. The discovery and taxonomic recognition of cryptic species has become increasingly fre- quent with the application of molecular phylogenetic analyses, particularly for species with broad geographic distributions. In this study we focus on the venomous pitviper species Cerrophidion godmani that is widely distributed throughout the highlands of Central America. We provide evidence based on both molecular phylogenetic analyses and morphological data that C. godmani represents three deeply divergent lineages and is possi- bly non-monophyletic. These three lineages are relatively conserved in their morphology and tend to be highly variable among individuals, but we do find sufficient morphological characters to diagnose them as evolutionarily distinct. We apply these data, together with known geographic distributions of populations, to infer boundaries of these three divergent evolutionary lineages. Based on the body of evidence, we formally name and describe two new species of Cerrophidion and redescribe C. godmani sensu stricto. Corresponding author: Robert C. Jadin, Department of Ecology and Evolutionary Biology, Uni- versity of Colorado Boulder, Boulder, CO 80309, USA; Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX 76019, USA. -
Ophryacus Sphenophrys (Smith, 1960)
Ophryacus sphenophrys (Smith, 1960). The Broad-horned Pitviper is a “priority one species” that has been assessed an Environmental Vulnerability Score (EVS) of 18 (see the following article), whose distribution is restricted to the Sierra Madre del Sur physiographic region. Grünwald et al. (2015: 407) indicated that this pitviper “has been collected only at the type locality [La Soledad] and one other locality in the same municipality, between La Soledad and Buenavista Loxicha. Both localities lie at moderate elevations on the extremely humid windward slope of the Sierra Madre del Sur of south-central Oaxaca…the known elevational range for this species is 1,340–1,460 m.” This individual was found at Portillo del Rayo, in the municipality of Candelaria Loxicha, Oaxaca. ' © Elí García-Padilla 543 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The endemic herpetofauna of Mexico: organisms of global significance in severe peril JERRY D. JOHNSON1, LARRY DAVID WILSON2, VICENTE MATA-SILVA1, ELÍ GARCÍA-PADILLA3, AND DOMINIC L. DESANTIS1 1Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mail: [email protected], and [email protected], and [email protected] 2Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] 3Oaxaca de Juárez, Oaxaca 68023, Mexico. E-mail: [email protected] ABSTRACT: Life on Earth exists due to the interactions among the atmosphere, hydrosphere, and litho- sphere. Humans, however, have created and are faced with the consequences of an interrelated set of problems that impact all of these spheres, including the biosphere. -
Hugo's Dissertation
TESTING MACROEVOLUTIONARY HYPOTHESES: DIVERSIFICATION AND PHYLOGENETIC IMPLICATIONS by HUGO ALAMILLO A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY School of Biological Sciences December 2010 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of HUGO ALAMILLO find it satisfactory and recommend that it be accepted. _________________________________ Michael E. Alfaro, Ph.D., Chair _________________________________ Luke J. Harmon, Ph.D. _________________________________ Eric Roalson, Ph.D. _________________________________ Gary Thorgaard, Ph.D. ii ACKNOWLEDGMENT Thank you to my major advisor, Michael Alfaro, for many productive conversations and for the many hours he spent helping me focus my thoughts and words. I am also indebted to Luke Harmon and Eric Roalson for all the theoretical, psychological and practical advice that they gave me. Gary Thorgaard was always a source of academic information as I witnessed first- hand from him how a departmental chair handles a biology department. Jack Sullivan served in my committee for several years and although he did not serve through the end purely for practical reasons, he was an excellent source of theoretical knowledge and a great model of confidence. I am also extremely indebted to my parents, Andrés and Eugenia Alamillo, for struggling emotionally and financially to migrate from Mexico and invest in my education. Without them I likely would not have known the amazing opportunities that being in The United States has afforded me. Individuals that I am thankful for also having shaped my professional perspective and fomented my success during my doctorate include, Chad Brock, Devin Drown, John Schenk, Anne Maglia, John Simmons, Christopher Sheil, Linda Trueb, Bill Duellman and Ed Myers. -
Collection, Trade & Regulation of Reptiles & Amphibians
Collection, Trade, and Regulation of Reptiles and Amphibians of the Chihuahuan Desert Ecoregion Lee A. Fitzgerald, Charles W. Painter, Adrian Reuter, and Craig Hoover COLLECTION, TRADE, AND REGULATION OF REPTILES AND AMPHIBIANS OF THE CHIHUAHUAN DESERT ECOREGION By Lee A. Fitzgerald, Charles W. Painter, Adrian Reuter, and Craig Hoover August 2004 TRAFFIC North America World Wildlife Fund 1250 24th Street NW Washington DC 20037 Visit www.traffic.org for an electronic edition of this report, and for more information about TRAFFIC North America. © 2004 WWF. All rights reserved by World Wildlife Fund, Inc. ISBN 0-89164-170-X All material appearing in this publication is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC Network, World Wildlife Fund (WWF), or IUCN-The World Conservation Union. The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Fitzgerald, L.A., et al. 2004. Collection, Trade, and Regulation of Reptiles and Amphibians of the Chihuahuan Desert Ecoregion. TRAFFIC North America. Washington D.C.: World Wildlife Fund. -
Natural History Notes
108 NATURAL HISTORY NOTES NATURAL HISTORY NOTES The Natural History Notes section is analogous to Geographic Distribution. Preferred notes should 1) focus on observations in the field, with little human intrusion; 2) represent more than the isolated documentation of developmental aberrations; and 3) possess a natural history perspective. Individual notes should, with few exceptions, concern only one species, and authors are requested to choose a keyword or short phrase that best describes the nature of their note (e.g., Reproduction, Morphology, Habitat, etc.). Use of figures to illustrate any data is encouraged but should replace words rather than embellish them. The section’s intent is to convey information rather than demonstrate prose. Articles submitted to this section will be reviewed and edited prior to acceptance. Electronic submission of manuscripts is requested (as Microsoft Word or Rich Text format [rtf] files, as e-mail attachments). Figures can be submitted electronically as JPG, TIFF, or PDF files at a minimum resolution of 300 dpi. Please DO NOT send graphic files as imbedded figures within a text file. Additional information concerning preparation and submission of graphics files is available on the SSAR web site at: http://www.ssarherps.org/HRinfo.html. Manuscripts should be sent to the appropriate section editor: Sean P. Graham or Crystal Kelehear Graham (amphibians; [email protected]); James Harding (turtles; [email protected]); Ruchira Somaweera (crocodilians, lizards, and Sphenodon; [email protected]); and John D. Willson or Andrew M. Durso (snakes; [email protected]). A reference template for preparing Natural History Notes may be found here: ssarherps.org/ publications/herpetological-review/. -
Identifying Global Priorities for the Conservation of Vipers
Biological Conservation 204 (2016) 94–102 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/bioc Identifying global priorities for the conservation of vipers Bryan Maritz a,⁎, Johannes Penner b,MarcioMartinsc, Jelka Crnobrnja-Isailović d,e, Stephen Spear f, Laura R.V. Alencar c, Jesús Sigala-Rodriguez g, Kevin Messenger h,i, Rulon W. Clark j,PritpalSooraek, Luca Luiselli l, Chris Jenkins f, Harry W. Greene m a Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa b Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany c Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil d Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia e Department of Evolutionary Biology, Institute for Biological Research “S. Stanković”, University of Belgrade, 11000 Belgrade, Serbia f Orianne Society, 100 Phoenix Road, Athens, GA 30605, USA g Colección Zoológica, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags. 20131, México h Department of Biological and Environmental Sciences, Alabama A & M University, 4900 Meridian St N, Huntsville, AL 35811, USA i Department of Zoology, Nanjing Forestry University, 159 Longpan Rd, Nanjing, Jiangsu, China j Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92116, USA k Terrestrial Assessment & Monitoring, Environment Agency, PO Box 45553, Abu Dhabi, United Arab Emirates l Centre of Environmental Studies Demetra, Rome, Italy m Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca 14850, USA article info abstract Article history: Vipers are among the most misunderstood and persecuted animals. -
Downloaded from Genbank (Table 2.1)
UNTANGLING A PHYLOGENETIC KNOT OF SERPENTS: INTEGRATIVE SYSTEMATICS ON NEOTROPICAL SNAKES by ROBERT C. JADIN B.Sc. – Northeastern State University, Tahlequah, OK, 2005 M.Sc. – University of Texas at Tyler, Tyler, TX, 2007 A dissertation submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology 2013 This thesis entitled: UNTANGLING A PHYLOGENETIC KNOT OF SERPENTS: INTEGRATIVE SYSTEMATICS ON NEOTROPICAL SNAKES Written by Robert Curtis Jadin has been approved for the Department of Ecology and Evolutionary Biology ____________________________________________________ Robert P. Guralnick _____________________________________________________ Jeffry B. Mitton _______________________________________________________ Andrew P. Martin _______________________________________________________ Patrick Kociolek _______________________________________________________ Herbert H. Covert Date: 6 May 2013 The final copy of this thesis has been examined by the signatories and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Jadin, Robert C. (Ph.D., Ecology and Evolutionary Biology) UNTANGLING A PHYLOGENETIC KNOT OF SERPENTS: INTEGRATIVE SYSTEMATICS ON NEOTROPICAL SNAKES Dissertation directed by Robert P. Guralnick ABSTRACT Taxonomy based on evolutionary relationships plays a critical role in science and society, as properly named