Identifying Global Priorities for the Conservation of Vipers Biological
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Diversity, Habitat Loss and Conservation in South
Diversity and Distributions, (Diversity Distrib.) (2014) 20, 1108–1119 BIODIVERSITY Phylogenetic diversity, habitat loss and RESEARCH conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias) Jessica Fenker1, Leonardo G. Tedeschi1, Robert Alexander Pyron2 and Cristiano de C. Nogueira1*,† 1Departamento de Zoologia, Universidade de ABSTRACT Brasılia, 70910-9004 Brasılia, Distrito Aim To analyze impacts of habitat loss on evolutionary diversity and to test Federal, Brazil, 2Department of Biological widely used biodiversity metrics as surrogates for phylogenetic diversity, we Sciences, The George Washington University, 2023 G. St. NW, Washington, DC 20052, study spatial and taxonomic patterns of phylogenetic diversity in a wide-rang- USA ing endemic Neotropical snake lineage. Location South America and the Antilles. Methods We updated distribution maps for 41 taxa, using species distribution A Journal of Conservation Biogeography models and a revised presence-records database. We estimated evolutionary dis- tinctiveness (ED) for each taxon using recent molecular and morphological phylogenies and weighted these values with two measures of extinction risk: percentages of habitat loss and IUCN threat status. We mapped phylogenetic diversity and richness levels and compared phylogenetic distances in pitviper subsets selected via endemism, richness, threat, habitat loss, biome type and the presence in biodiversity hotspots to values obtained in randomized assemblages. Results Evolutionary distinctiveness differed according to the phylogeny used, and conservation assessment ranks varied according to the chosen proxy of extinction risk. Two of the three main areas of high phylogenetic diversity were coincident with areas of high species richness. A third area was identified only by one phylogeny and was not a richness hotspot. Faunal assemblages identified by level of endemism, habitat loss, biome type or the presence in biodiversity hotspots captured phylogenetic diversity levels no better than random assem- blages. -
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
Bitis Peringueyi Boulenger Peringueys Adder.Pdf
African Herp News Newsletter of the Herpetological Association of Africa Number 52 DECEMBER 2010 HERPETOLOGICAL ASSOCIATION OF AFRICA http://www. wits.ac.za/haa FOUNDED 1965 The HAA is dedicated to the study and conservation of African reptiles and amphibians. Membership is open to anyone with an interest in the African herpetofauna. Members receive the Association‘s journal, African Journal of Herpetology (which publishes review papers, research articles, and short communications – subject to peer review) and African Herp News, the Newsletter (which includes short communications, natural history notes, geographical distribution notes, herpetological survey reports, venom and snakebite notes, book reviews, bibliographies, husbandry hints, announcements and news items). NEWSLETTER EDITOR’S NOTE Articles shall be considered for publication provided that they are original and have not been published elsewhere. Articles will be submitted for peer review at the Editor‘s discretion. Authors are requested to submit manuscripts by e-mail in MS Word ‗.doc‘ or ‗.docx‘ format. COPYRIGHT: Articles published in the Newsletter are copyright of the Herpetological Association of Africa and may not be reproduced without permission of the Editor. The views and opinions expressed in articles are not necessarily those of the Editor. COMMITTEE OF THE HERPETOLOGICAL ASSOCIATION OF AFRICA CHAIRMAN Aaron Bauer, Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA. [email protected] SECRETARY Jeanne Tarrant, African Amphibian Conservation Research Group, NWU. 40A Hilltop Road, Hillcrest 3610, South Africa. [email protected] TREASURER Abeda Dawood, National Zoological Gardens, Corner of Boom and Paul Kruger Streets, Pretoria 0002, South Africa. [email protected] JOURNAL EDITOR John Measey, Applied Biodiversity Research, Kirstenbosch Research Centre, South African Biodiversity Institute, P/Bag X7, Claremont 7735, South Africa. -
Third-Generation Antivenomics Analysis of the Preclinical Efficacy Of
Toxicon: X 1 (2019) 100004 Contents lists available at ScienceDirect Toxicon: X journal homepage: www.journals.elsevier.com/toxicon-x Third-generation antivenomics analysis of the preclinical efficacy of ® T Bothrofav antivenom towards Bothrops lanceolatus venom ∗ Davinia Plaa, Yania Rodrígueza, Dabor Resiereb, Hossein Mehdaouib, José María Gutiérrezc, , ∗∗ Juan J. Calvetea, a Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain b Service des Urgences et de Reanimation Polyvalente, Centre Hospitalier Universitaire, Fort-de-France, Martinique, France c Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica ARTICLE INFO ABSTRACT ® Keywords: Bothrops lanceolatus inflicts severe envenomings in the Lesser Caribbean island of Martinique. Bothrofav , a Bothrops lanceolatus monospecific antivenom against B. lanceolatus venom, has proven highly effective at the preclinical and clinical ® Antivenom levels. Here, we report a detailed third-generation antivenomics quantitative analysis of Bothrofav . With the Snake venom ® ® exception of poorly-immunogenic peptides, Bothrofav immunocaptured all the major protein components. Bothrofav These results, along with previous preclinical and clinical observations, underscore the high neutralizing efficacy Third-generation antivenomics of the antivenom against B. lanceolatus venom. Martinique Bothrops lanceolatus is an endemic viperid snake in the French and therapeutic antibody molecules present in an antivenom. Thus, overseas Department of Martinique, in the Lesser Caribbean, where it neutralization assays and antivenomics complement each other in the represents the only venomous snake (Campbell and Lamar, 2004). En- characterization of the preclinical efficacy of antivenoms (Gutiérrez venomings by this species are similar to those inflicted by other Bo- et al., 2017). -
Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris Chlorechis, Atheris Nitschei and Atheris Squamigera
toxins Article Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera He Wang 1,*, Xiaole Chen 2,*, Mei Zhou 3, Lei Wang 3, Tianbao Chen 3 and Chris Shaw 3 1 School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie Town, Fuzhou 350122, Fujian, China 2 School of Pharmacy, Fujian Medical University, No.1 Xueyuan Road, Shangjie Town, Fuzhou 350004, Fujian, China 3 Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK; [email protected] (M.Z.); [email protected] (L.W.); [email protected] (T.C.); [email protected] (C.S.) * Correspondence: [email protected] or [email protected] (H.W.); [email protected] (X.C.); Tel.: +86-591-2286-1151 (H.W.); +86-591-2286-2692 (X.C.) Academic Editor: Bryan Grieg Fry Received: 24 February 2016; Accepted: 20 May 2016; Published: 1 June 2016 Abstract: Secretory phospholipase A2 (sPLA2) is known as a major component of snake venoms and displays higher-order catalytic hydrolysis functions as well as a wide range of pathological effects. Atheris is not a notoriously dangerous genus of snakes although there are some reports of fatal cases after envenomation due to the effects of coagulation disturbances and hemorrhaging. Molecular characterization of Atheris venom enzymes is incomplete and there are only a few reports in the literature. Here, we report, for the first time, the cloning and characterization of three novel cDNAs encoding phospholipase A2 precursors (one each) from the venoms of the Western bush viper (Atheris chlorechis), the Great Lakes bush viper (Atheris nitschei) and the Variable bush viper (Atheris squamigera), using a “shotgun cloning” strategy. -
Dwarfs on the Move: Spatial Ecology of the World's Smallest Viper, Bitis Schneideri Author(S) :Bryan Maritz and Graham J
Dwarfs on the Move: Spatial Ecology of the World's Smallest Viper, Bitis schneideri Author(s) :Bryan Maritz and Graham J. Alexander Source: Copeia, 2012(1):115-120. 2012. Published By: The American Society of Ichthyologists and Herpetologists DOI: http://dx.doi.org/10.1643/CH-11-048 URL: http://www.bioone.org/doi/full/10.1643/CH-11-048 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Copeia 2012, No. 1, 115–120 Dwarfs on the Move: Spatial Ecology of the World’s Smallest Viper, Bitis schneideri Bryan Maritz1 and Graham J. Alexander1 Namaqua Dwarf Adders (Bitis schneideri) are small viperids that inhabit sandy coastal habitats within the Succulent Karoo Biome in southern Africa. Their ecology, and the faunal ecology within the region in general, is poorly documented, hampering effective conservation planning for this biodiversity hotspot. -
Cop13 Analyses Cover 29 Jul 04.Qxd
IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 13th Meeting of the Conference of the Parties Bangkok, Thailand 2-14 October 2004 Prepared by IUCN Species Survival Commission and TRAFFIC Production of the 2004 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices was made possible through the support of: The Commission of the European Union Canadian Wildlife Service Ministry of Agriculture, Nature and Food Quality, Department for Nature, the Netherlands Federal Agency for Nature Conservation, Germany Federal Veterinary Office, Switzerland Ministerio de Medio Ambiente, Dirección General para la Biodiversidad (Spain) Ministère de l'écologie et du développement durable, Direction de la nature et des paysages (France) IUCN-The World Conservation Union IUCN-The World Conservation Union brings together states, government agencies and a diverse range of non-governmental organizations in a unique global partnership - over 1 000 members in some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. IUCN builds on the strengths of its members, networks and partners to enhance their capacity and to support global alliances to safeguard natural resources at local, regional and global levels. The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions. With 8 000 scientists, field researchers, government officials and conservation leaders, the SSC membership is an unmatched source of information about biodiversity conservation. SSC members provide technical and scientific advice to conservation activities throughout the world and to governments, international conventions and conservation organizations. -
Journal of the East Africa Natural History Society and National Museum
JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUM 15 October, 1978 Vol. 31 No. 167 A CHECKLIST OF mE SNAKES OF KENYA Stephen Spawls 35 WQodland Rise, Muswell Hill, London NIO, England ABSTRACT Loveridge (1957) lists 161 species and subspecies of snake from East Mrica. Eighty-nine of these belonging to some 41 genera were recorded from Kenya. The new list contains some 106 forms of 46 genera. - Three full species have been deleted from Loveridge's original checklist. Typhlops b. blanfordii has been synonymised with Typhlops I. lineolatus, Typhlops kaimosae has been synonymised with Typhlops angolensis (Roux-Esteve 1974) and Co/uber citeroii has been synonymised with Meizodon semiornatus (Lanza 1963). Of the 20 forms added to the list, 12 are forms collected for the first time in Kenya but occurring outside its political boundaries and one, Atheris desaixi is a new species, the holotype and paratypes being collected within Kenya. There has also been a large number of changes amongst the 89 original species as a result of revisionary systematic studies. This accounts for the other additions to the list. INTRODUCTION The most recent checklist dealing with the snakes of Kenya is Loveridge (1957). Since that date there has been a significant number of developments in the Kenyan herpetological field. This paper intends to update the nomenclature in the part of the checklist that concerns the snakes of Kenya and to extend the list to include all the species now known to occur within the political boundaries of Kenya. It also provides the range of each species within Kenya with specific locality records . -
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
Inclusion in Appendix II, Bush Viper
Original language: English and French CoP17 Prop. XX CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September - 5 October 2016 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of the Mt. Kenya Bush Viper Atheris desaixi in Appendix II in accordance with Article II, paragraph 2 (a), of the Convention and Resolution Conf. 9.24 (Rev. CoP16), Annex 2 a. B. Proponent Kenya C. Supporting statement 1. Taxonomy 1.1. Class: Reptilia 1.2. Order: Squamata 1.3. Family: Viperidae 1.4. Genus and species: Atheris desaixi (Ashe, 1968) 1.5. Scientific synonyms: None 1.6. Common names: English Mt. Kenya Bush Viper, Ashe’s Viper 1.7. Code number: Not applicable 2. Overview This proposal seeks to list Mt Kenya bush viper in CITES Appendix to help regulate trade and enhance enforcement for its conservation. Mt. Kenya Bush viper is endemic to Kenya and has a restricted range in mid-attitude forests in central Kenya. The species is reported to be in decline in its known sites to the extent of depletion as a result of habitat degradation and illegal collection. Natural densities are very low and census is very difficult to carry out. No meaningful monitoring of trade is possible without a CITES listing and no records exist as all the trade is illegal. There is evidence of international live trade to meet demands for zoos and private collections mainly in CoP17 Prop. XX – p. 1 Europe and USA. -
Snake Venom from the Venezuelan C
BOLETÍN DE MALARIOLOGÍA Y SALUD AMBIENTAL Agosto-Diciembre 2014, Vol. LIV (2): 138-149 Biochemical and biological characterisation of lancehead (Bothrops venezuelensis Sandner 1952) snake venom from the Venezuelan Central Coastal range Caracterización bioquímica y biológica del veneno de la serpiente "tigra mariposa" (Bothrops venezuelensis Sandner 1952) de la región central de la Cordillera de la Costa Venezolana Elda E. Sánchez1, María E. Girón2, Nestor L. Uzcátegui2, Belsy Guerrero3, Max Saucedo1, Esteban Cuevas1 & Alexis Rodríguez-Acosta2* RESUMEN SUMMARY Se aislaron fracciones del veneno de Bothrops Venom fractions isolated from Bothrops venezuelensis que demuestran ser un espectro abundante de venezuelensis were shown to contain a broad spectrum proteínas con actividades variadas (coagulante, hemorrágica, of proteins with varied activities. This study describes fibrinolítica, proteolítica y de función plaquetaria), para el venom fractions with coagulant, haemorrhagic, fibrinolytic, análisis de sus propiedades físico-químicas y biológicas, proteolytic and antiplatelet activities, and analyses their el veneno fue fraccionado por cromatografía de exclusión physico-chemical properties and biological activities via molecular, corrido en una electroforesis en gel y realizada molecular exclusion chromatography, gel electrophoresis una batería de ensayos biológicos. La DL50 del veneno and a bioassay battery. The LD50, determined by injecting de B. venezuelensis fue 6,39 mg/kg de peso corporal, fue intraperitoneally serial dilutions of B. venezuelensis determinada inyectando intraperitonealmente en ratones, venom into mice, was 6.39 mg/kg body weight. Twelve diluciones seriadas de veneno de B. venezuelensis. Se fractions were collected from B. venezuelensis venom colectaron doce fracciones a partir del veneno de B. using molecular exclusion chromatography. Of these, venezuelensis mediante cromatografía de exclusión molecular. -
Biodiversity in Sub-Saharan Africa and Its Islands Conservation, Management and Sustainable Use
Biodiversity in Sub-Saharan Africa and its Islands Conservation, Management and Sustainable Use Occasional Papers of the IUCN Species Survival Commission No. 6 IUCN - The World Conservation Union IUCN Species Survival Commission Role of the SSC The Species Survival Commission (SSC) is IUCN's primary source of the 4. To provide advice, information, and expertise to the Secretariat of the scientific and technical information required for the maintenance of biologi- Convention on International Trade in Endangered Species of Wild Fauna cal diversity through the conservation of endangered and vulnerable species and Flora (CITES) and other international agreements affecting conser- of fauna and flora, whilst recommending and promoting measures for their vation of species or biological diversity. conservation, and for the management of other species of conservation con- cern. Its objective is to mobilize action to prevent the extinction of species, 5. To carry out specific tasks on behalf of the Union, including: sub-species and discrete populations of fauna and flora, thereby not only maintaining biological diversity but improving the status of endangered and • coordination of a programme of activities for the conservation of bio- vulnerable species. logical diversity within the framework of the IUCN Conservation Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitoring 1. To participate in the further development, promotion and implementation the status of species and populations of conservation concern. of the World Conservation Strategy; to advise on the development of IUCN's Conservation Programme; to support the implementation of the • development and review of conservation action plans and priorities Programme' and to assist in the development, screening, and monitoring for species and their populations.