Proposed Plan Change 22
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Letter Template
ATTACHMENT 5 Geological Assessment (Tonkin & Taylor) Job No: 1007709 10 January 2019 McConnell Property PO Box 614 Auckland 1140 Attention: Matt Anderson Dear Matt Orakei ONF Assessment 1- 3 Purewa Rd, Meadowbank Introduction McConnell Property is proposing to undertake the development of a multi-story apartment building at 1 - 3 Purewa Road, Meadowbank. The property is located within an area covered by the Outstanding Natural Feature (ONF) overlay of the Auckland Unitary Plan. The overlay relates to the Orakei Basin volcano located to the west of the property. The ONF overlay requires consent for the earthworks and the proposed built form associated with the development of the site. McConnell Property has commissioned Tonkin & Taylor Ltd (T+T) to provide a geological assessment of the property with respect to both the ONF overlay and the geological characteristics of the property. The purpose of the assessment is to place the property in context of the significant geological features identified by the ONF overlay, and to assess the geological effects of the proposed development. Proposed Development The proposal (as shown in the architectural drawings appended to the application) is to remove the existing houses and much of the vegetation from the site, and to develop the site with a new four- storey residential apartment building with a single-level basement for parking. The development will involve excavation of the site, which will require cuts of up to approximately 6m below existing ground level (bgl). The cut depths vary across the site, resulting in the average cut depth being less than 6m bgl. Site Description The site is located at the end of the eastern arm of the ridgeline that encloses the Orakei Basin (Figure 1). -
Schedule 6 Outstanding Natural Features Overlay Schedule
Schedule 6 Outstanding Natural Features Overlay Schedule Schedule 6 Outstanding Natural Features Overlay Schedule [rcp/dp] Introduction The factors in B4.2.2(4) have been used to determine the features included in Schedule 6 Outstanding Natural Features Overlay Schedule, and will be used to assess proposed future additions to the schedule. ID Name Location Site type Description Unitary Plan criteria 2 Algies Beach Algies Bay E This site is one of the a, b, g melange best examples of an exposure of the contact between Northland Allocthon and Miocene Waitemata Group rocks. 3 Ambury Road Mangere F A complex 140m long a, b, c, lava cave Bridge lava cave with two d, g, i branches and many well- preserved flow features. Part of the cave contains unusual lava stalagmites with corresponding stalactites above. 4 Anawhata Waitākere A This locality includes a a, c, e, gorge and combination of g, i, l beach unmodified landforms, produced by the dynamic geomorphic processes of the Waitakere coast. Anawhata Beach is an exposed sandy beach, accumulated between dramatic rocky headlands. Inland from the beach, the Anawhata Stream has incised a deep gorge into the surrounding conglomerate rock. 5 Anawhata Waitākere E A well-exposed, and a, b, g, l intrusion unusual mushroom-shaped andesite intrusion in sea cliffs in a small embayment around rocks at the north side of Anawhata Beach. 6 Arataki Titirangi E The best and most easily a, c, l volcanic accessible exposure in breccia and the eastern Waitākere sandstone Ranges illustrating the interfingering nature of Auckland Unitary Plan Operative in part 1 Schedule 6 Outstanding Natural Features Overlay Schedule the coarse volcanic breccias from the Waitākere Volcano with the volcanic-poor Waitematā Basin sandstone and siltstones. -
March 2013 1 Appendix 3.1: Schedule Of
Draft Auckland Unitary Plan – March 2013 Appendix 3.1: Schedule of Outstanding Natural Features Introduction The following criteria are used to determine the contents of this schedule, and will be used to consider any proposed additions to it. a. the extent to which the landform feature or geological site contributes to the understanding of the geology or evolution of the biota in the region, New Zealand or the earth (includes type localities of rock formations, minerals and fossils) b. the rarity or unusual nature of the site or feature; c. the extent to which the feature or site is an outstanding representative example of the diversity of natural landforms and geological features in Auckland; d. the extent to which the landform or geological feature or site is a component of a recognisable group of geologically associated features; e. the extent to which the landform or geological feature or site contributes to the aesthetic value or visual legibility of the wider natural landscape; f. the community association with, or public appreciation of the values of the feature or site g. the potential value of the feature or site for public education; h. the potential value of the feature or site to provide additional understanding of the geological or biotic history of the region; i. the state of preservation of the feature or site; j. the extent to which a feature or site is associated with an historically important natural event, geologically related industry, or individual involved in earth science research k. the importance of the feature or site to Mana Whenua; l. -
Auckland Volcanic Field Magmatism, Volcanism, and Hazard: a Review
1 This is an Accepted Manuscript of an article published by Taylor & Francis in New Zealand 2 Journal of Geology and Geophysics on 18 March 2020, available online: 3 http://www.tandfonline.com/10.1080/00288306.2020.1736102 4 5 6 Auckland Volcanic Field magmatism, volcanism, and hazard: a review 7 8 9 Jenni L Hopkins*1, Elaine R Smid*2, Jennifer D Eccles2, Josh L Hayes3, Bruce W Hayward4, Lucy E McGee5, 10 Kasper van Wijk2, Thomas M Wilson3, Shane J Cronin2, Graham S Leonard6, Jan M Lindsay2, Karoly 11 Németh7, Ian E M Smith2 12 13 *Corresponding Author(s): [email protected] / [email protected] 14 15 1Victoria University of Wellington, PO Box 600, Wellington, New Zealand 16 2 University of Auckland, Private Bag 92019, Auckland, New Zealand 17 3 University of Canterbury, Private Bag 4800, Christchurch, New Zealand 18 4 Geomarine Research, 19 Debron Ave, Remuera, Auckland, New Zealand 19 5 University of Adelaide, Adelaide, Australia 20 6 GNS Science, PO Box 30-368, Lower Hutt, New Zealand 21 7 Massey University, Private Bag 11 222, Palmerston North, New Zealand 22 23 24 25 26 27 Manuscript prepared for submission to the IAVCEI special issue of New Zealand Journal of Geology and 28 Geophysics 29 30 31 1 32 33 Keywords 34 intraplate, monogenetic volcanism, chronology, tephrochronology, volcanic hazard assessment, faulting, 35 magma ascent rates, geochemistry, eruption scenarios, New Zealand 2 36 Abstract 37 Auckland Volcanic Field (AVF) is a basaltic intraplate volcanic field in North Island, New Zealand, 38 upon which >1.6 million people live. -
Age of the Auckland Volcanic Field Jan Lindsay and Graham Leonard
Age of the Auckland Volcanic Field Jan Lindsay and Graham Leonard IESE Report 1-2009.02 | June 2009 ISBN: [print] 978-0-473-15316-8 [PDF] 978-0-473-15416-5 Age of the Auckland Volcanic Field Jan Lindsay1 and Graham Leonard2 1School of Environment & Institute of Earth Science and Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand; [email protected] 2GNS Science, PO Box 30368, Lower Hutt 5040 New Zealand; [email protected] IESE Report 1-2009.02 | June 2009 ISBN: [print] 978-0-473-15316-8 [PDF] 978-0-473-15416-5 This report was prepared by IESE as part of the DEVORA Project. Disclaimer: While the information contained in this report is believed to be correct at the time of publication, the Institute of Earth Science and Engineering and its working parties and agents involved in preparation and publication, do not accept any liability for its contents or for any consequences arising from its use. Copyright: This work is copyright of the Institute of Earth Science and Engineering. The content may be used with acknowledgement to the Institute of Earth Science and Engineering and the appropriate citation. TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 2 Project objectives ..................................................................................................................... 2 Methodology ............................................................................................................................ -
Constructing a Temporal Eruption Record for the Auckland Volcanic Field Via Bayesian Age Reconciliation
Constructing a temporal eruption record for the Auckland Volcanic Field via Bayesian age reconciliation Emily Kawabata, Mark Bebbington, Shane Cronin, Ting Wang Massey University, University of Auckland, University of Otago The Auckland Volcanic Field High population density, lifelines narrowly constrained - WHERE is the next eruption likely to be? 2 Spatio-temporal hazard estimates Monogenetic volcanic fields have multiple volcanoes; a new eruption is expected to create a new volcano. Events are infrequent. For land-use and emergency planning purposes: where is the next eruption likely to be? In short time frame, answered(?) by monitoring data (seismicity, gas, ...) What about in a period of repose? Probability forecast: estimate the hazard λ(x) such that the probability of an event in the neighbourhood of x , (i.e., y:||y-x|| < ∆x) ~ λ(x) π (∆x)2 We know the spatial locations of Look for spatial patterns (events are more (most) vents likely to occur `near’ previous events?) BUT! Want PRESENT DAY hazard Does the pattern change over time? 3 The Auckland Volcanic Field 51(?) small basaltic volcanoes young (~250,000 years) Most recent eruption ~600 years ago Data: • Stratigraphy, ~33 vents constrained in at least one direction • Age determinations • Paleomagnetism ~5+ vents • C14, ~13 vents • Tephrostratigraphy, 22+ tephra in 5 locations • Ar-Ar, ~4 vents • Thermoluminesence, 2 vents • K-Ar, unreliable due to excess Ar reliability Decreasing • Relative geomorphology or weathering Also: known vent locations, reasonable volume data (Allen and Smith 1994; Kereszturi et al. 2013) 4 A Monte Carlo sample of age-orderings Name Mean Age (ka) Age Error (ka) Min Order Max Order By reverse engineering the tephra Onepoto Basin 248.4 27.8 1 7 Albert Park 229.8 39.5 1 7 dispersal, Bebbington and Cronin ..... -
Volcanic Viewshafts Management Framework Proposed Methodology Applied to Seven Case Studies
JUNE 2015 PROPOSED AUCKLAND UNITARY PLAN HEARING 020 - VOLCANIC VIEWSHAFTS VOLCANIC VIEWSHAFTS MANAGEMENT FRAMEWORK PROPOSED METHODOLOGY APPLIED TO SEVEN CASE STUDIES JUNE 2015 PROPOSED AUCKLAND UNITARY PLAN HEARING 020 - VOLCANIC VIEWSHAFTS VOLCANIC VIEWSHAFTS MANAGEMENT FRAMEWORK PART A: IDENTIFICATION The purpose of this stage is to identify the range of potential viewshafts across Auckland and qualitatively capture information about them. The identification process is not concerned with ranking one viewshaft against another, or assessing the potential impact of imposing the viewshaft. It is envisaged that the process of identification is well documented in order to provide clarity for later stages. The methodology for identification of viewshafts to be potentially protected involves consideration of the following factors: 1. Significance of the Individual Cone: • Physical stature: elevation, scale, profile, dominance, legibility • Intactness: topography, form • Character: vegetation cover, land use cover / elements • Social Value & Status: reserves / art / literature / tourism • Cultural / Tangata Whenua Values: pa sites / remnants / commemorative elements. 2. Significance of Origin Point: • Type of View: Transport Corridors (e.g. commuter and main trunk rail routes), Strategic Road Routes (nationally important) / Regional Arterial Road Routes (regionally important), parks & reserves / open spaces / beaches / promenades / sports fields / walkways & cycleways / commercial centres / community centres • Identification and Nature of the -
Maori Gardening: an Archaeological Perspective
Maori gardening An archaeological perspective Louise Furey Published by Science & Technical Publishing Department of Conservation PO Box 10–420 Wellington, New Zealand Cover: Pa, stone row enclosures and puke (garden mounds) at Waikekeno, Wairarapa. Photo: Kevin L. Jones, DOC. © Copyright October 2006, New Zealand Department of Conservation ISBN 0–478–14122–X This report was prepared for publication by Science & Technical Publishing; editing by Lynette Clelland and Amanda Todd, and layout by Amanda Todd. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. Maori cultigens 10 2.1 Kumara 10 2.2 Taro 13 2.3 Yam 14 2.4 Gourd 14 2.5 Ti pore 15 2.6 Aute 16 3. Gardening techniques 17 3.1 Garden location 17 3.2 Garden size 17 3.3 Fallowing 18 3.4 Garden preparation 18 3.5 Soil additives 19 4. Limitations to growth of Maori cultigens 20 5. Archaeological evidence of Maori gardening 23 5.1 Stone structures 24 5.1.1 Stone walls and rows 24 5.1.2 Stone alignments 31 5.1.3 Stone heaps 31 5.1.4 Stone mounds 31 5.1.5 Stone facing 34 5.2 Ditches and trenches 34 5.2.1 Steep-slope trenches 36 5.2.2 Trenches on gentle slopes 38 5.2.3 Trench boundary divisions 39 5.2.4 Wetland ditches 40 5.3 Borrow pits 44 5.4 Garden soils 46 5.5 Garden terraces 52 6. -
Annexure a to Procedural Minute 6
Proposed Auckland Unitary Plan Appendix 3.1 Schedule for the Outstanding Natural Features Overlay Owner/ Approral/ Sub#/ Point Name Theme Topic Subtopic Summary Submission Type Support Evidence Comentary Investigate 81 Mt Royal Rd, Mt Albert, and all other lava cave Appendix 3.1 - Schedule for the entrances, for inclusion in the SEA schedule [Note - relates to Outstanding Natural Outstanding Natural Features ONFs. Refer to Albert-Eden Local Board Views, Volume 26, page 5716-3481 Auckland Council Features (ONF) Rules Overlay Add 30/103]. Local Government no iv Investigate the 'Spring', located under Crystal Motors at 11 Ruru Appendix 3.1 - Schedule for the St, Eden Terrace, for inclusion in the SEA schedule [Note - Outstanding Natural Outstanding Natural Features relates to ONFs. Refer to Albert-Eden Local Board Views, Volume 5716-3482 Auckland Council Features (ONF) Rules Overlay Add 26, page 30/103]. Local Government no iv Auckland Volcanic Appendix 3.1 - Schedule for the Include volcanic features in former outlying district such as Cones Society Outstanding Natural Outstanding Natural Features Franklin within the PAUP including Pukekohe Hill, Puni Mountain, 4485-11 Incorporated Features (ONF) Rules Overlay Add Pukekohe East crater. Key Stakeholder no iv Auckland Volcanic Appendix 3.1 - Schedule for the Cones Society Outstanding Natural Outstanding Natural Features Include Pukekohe Hill and Puni Mountain as outstanding natural 4485-13 Incorporated Features (ONF) Rules Overlay Add features. Key Stakeholder no iv Auckland Volcanic Appendix 3.1 - Schedule for the Cones Society Outstanding Natural Outstanding Natural Features Apply V1 and V2 overlays to volcanic reserves and surrounding 4485-21 Incorporated Features (ONF) Rules Overlay Add Includeareas. -
Proposed Auckland Unitary Plan
Volcanic Viewshafts and height sensitive areas rules - Appendix 3.3 - Volcanic view shafts survey coordinates Proposed Auckland Unitary Plan Summary of Decisions Requested Sub#/ Point Name Theme Topic Subtopic Summary Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-20 Geoscience Society of New Zealand sensitive areas rules survey coordinates Protect views between Maunga. Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-152 Geoscience Society of New Zealand sensitive areas rules survey coordinates Retain all the viewshafts listed Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-153 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add additional viewshafts which protect iconic explosion craters Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-154 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Panmure Basin from the top of Mt Wellington Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-155 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Orakei Basin from Kepa Road Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-156 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Orakei Basin from Upland Road crest. Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-157 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Rangitoto from Lucerne Road, Remuera Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-158 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Mt Wellington from Lunn Ave-Abbotts Way intersection. -
FT3 Rangitoto Island
Rangitoto re‐visited: new insights to an old friend Jan Lindsay Andrew Needham Ian Smith Pre‐conference field trip Auckland 21 November 2010 School of Environment Rangitoto re-visited: new insights to an old friend Field Trip leaders Jan Lindsay, School of Environment, The University of Auckland, [email protected] Andrew Needham, School of Geosciences, Monash University, Australia Lucy McGee, School of Environment, The University of Auckland Tracy Howe, IESE, The University of Auckland Overview Rangitoto is one of Auckland’s more iconic landscape features. Standing like a bastion in the Waitemata harbour, Rangitoto last erupted some ~550 years ago after Auckland was settled by Maori, and is therefore the youngest volcano in the Auckland Volcanic Field (Lindsay 2010). Recent research has revealed more about Rangitoto’s history, which will be discussed ascending its summit and exploring its various volcanic features. The ferry departs from the downtown ferry terminal at 9.15am and Devonport at 9.25am, and will leave Rangitoto at 3.45pm. The walk is a moderate one on rough tracks and requires sturdy footwear and a moderate level of fitness. Key Facts Maori name: Rangitoto, derived from the phrase ‘Nga Rangi-i-totongia-a Tama-te-kapua’ - the days of the bleeding of Tama-te-kapua - captain of the Arawa waka, referring to a battle between Tamatekapua and the Tainui at Islington Bay (e.g. Murdoch 1991). Location: Auckland City. Part of the Auckland Volcanic Field Height: 260 m Age: Formed during two eruptions, 600 and 550 years ago (ca 1400 AD and 1450 AD) Composition: Basalt lava, scoria and ash Volume volcanic material: About 2 cubic km Introduction Rangitoto Island is a graceful, almost symmetrical, volcanic cone which dominates the skyline to the north-east of Auckland City (Fig. -
Catalogue of Crustal Xenoliths from the St. Heliers Volcanoes, Auckland Volcanic Field, New Zealand K.B
Catalogue of Crustal Xenoliths from the St. Heliers Volcanoes, Auckland Volcanic Field, New Zealand K.B. Spörli and P.M. Black IESE Report 1-2013.01 | November 2013 ISBN: [print] 978-0-9876566-4-3 [pdf] 978-0-9876566-5-0 Catalogue of Crustal Xenoliths from the St. Heliers Volcanoes, Auckland Volcanic Field, New Zealand K.B. Spörli*1, 2 and P.M. Black1 1 Geology Programme, School of Environment, University of Auckland 2 Institute of Earth Science and Engineering (IESE), University of Auckland *[email protected] IESE Report 1-2013.01 | November 2013 This report was prepared by IESE as part of the DEVORA Project. Disclaimer: While the information contained in this report is believed to be correct at the time of publication, the Institute of Earth Science and Engineering and its working parties and agents involved in preparation and publication, do not accept any liability for its contents or for any consequences arising from its use. Copyright: This work is copyright of the Institute of Earth Science and Engineering. The content may be used with acknowledgement to the Institute of Earth Science and Engineering and the appropriate citation. Photos, from left to right: 1) thin section of amphibolitic schist (plain polarized light). 2): Typical boulder of tuff with xenoliths. 3) Thin section of rodingite with garnet (black) replacing a crack-seal vein (x polarisers). TABLE OF CONTENTS ABSTRACT .................................................................................................................................... 1 INTRODUCTION