NL DE W (BE) LU FR CH at FL IT DE N Oordzee

Total Page:16

File Type:pdf, Size:1020Kb

NL DE W (BE) LU FR CH at FL IT DE N Oordzee 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E 11°E 12°E International Rhine River Basin District Types of lakes e Report Part A Big, deep, high-lime and layered type of lake of the e K 4 Surface water bodies Alpine Rhine z Types of water bodies Moderate and shallow buffered lake type of the d Delta Rhine Rhine river basin district Big and deep buffered lake type of the Delta Rhine N ° r 3 State frontiers 5 No definition of type as yet o Federal boundaries Types of main stream N ° 3 o NL Limit of the 1-mile-zone 5 Elongated type of the Alpine Rhine (Rhine km 0 - 8.9) Towns Branched type of the Alpine Rhine (Rhine km 8.9 – 80) N IJsselmeer Outlet type of the Alpine Rhine (Rhine km 80 - 93) V e c Outlet of lake type of the High Rhine (Rhine km 24 – 45) h l t DE e Narrow valley type of the Hihg Rhine (Rhine km 45 - 170) e s Amsterdam s Furcation type of the Upper Rhine (Rhine km 170 – 290) J I N Den Haag Meander type of the Upper Rhine (Rhine km 290 – 529) ° 2 5 Rotterdam Narrow valley type of the Middle Rhine Nederrijn/Lek (Rhine km 529 – 639) N ° 2 Type of the Lower Rhine characterized by uplands 5 Wa al (Rhine km 639 – 701) Lippe Type of the Lower Rhine with few side waters (Rhine km 701 – 775) Dortmund Type of the Lower Rhine with many side waters Duisburg Essen R (Rhine km 775 – 865,5) u h r Type of the Delta Rhine with many side waters Düsseldorf Freshwater-tidal water type of the Delta Rhine N ° 1 5 Types of transitional waters Köln N Estuary type of the Delta Rhine ° 1 5 Sieg Types of coastal waters Wadden Sea type of the Delta Rhine R Open sea zone type of the Delta Rhine W (BE) h e in L n a h aale e S ch N is ° Frankfurt a. M. k 0 n 5 Wiesbaden rä F N Sauer ° el 0 s 5 o R M Mainz e e g h ain n LU a M i t Luxembourg N z Types of tributaries (> 2 500 km²) Water course of the late moraine of the S a Alpine headlans a N r e c Siliceous upland brooks rich in k Saarbrücken a fine material r DE N ° Siliceous upland brooks rich in lle Metz 9 e 4 s bulky material o M N Siliceous upland brooks rich in ° 9 fine to bulky material 4 Carbonado containing upland brooks Stuttgart rich in fine material FR S Carbonado containing upland brooks a M r Strasbourg rich in bulky material e re ur th Carbonado containing upland brooks e rich in fine to bulky material Ill n Big upland rivers i h N ° Rivers characterized by gravel R 8 4 > 10 000 km² Lowland rivers characterized by N ° 8 sand and silt 4 Lowland brooks characterized by gravel Small lowland water courses in the river Bodensee and stream valleys Rhein No type assignment Basel Zürich 1 cm = 23 km (A3) Bregenz in e h r N ° e ar n 7 0 15 30 60 km A e 4 p FVaLduz l AT A N ° Coordination 7 CH 4 Committee Rhine n hein i derr e Vor h Implementation r r e Bundesanstalt für t Gewässerkunde in H Data sources - Authorities in charge in the Rhine river basin district IT N ° - This product includes geographical data licensed from State: 6 4 European National Mapping Agencies. © EuroGeographics December 2009 5°E 6°E 7°E 8°E 9°E 10°E 11°E 12°E.
Recommended publications
  • Response of Drainage Systems to Neogene Evolution of the Jura Fold-Thrust Belt and Upper Rhine Graben
    1661-8726/09/010057-19 Swiss J. Geosci. 102 (2009) 57–75 DOI 10.1007/s00015-009-1306-4 Birkhäuser Verlag, Basel, 2009 Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben PETER A. ZIEGLER* & MARIELLE FRAEFEL Key words: Neotectonics, Northern Switzerland, Upper Rhine Graben, Jura Mountains ABSTRACT The eastern Jura Mountains consist of the Jura fold-thrust belt and the late Pliocene to early Quaternary (2.9–1.7 Ma) Aare-Rhine and Doubs stage autochthonous Tabular Jura and Vesoul-Montbéliard Plateau. They are and 5) Quaternary (1.7–0 Ma) Alpine-Rhine and Doubs stage. drained by the river Rhine, which flows into the North Sea, and the river Development of the thin-skinned Jura fold-thrust belt controlled the first Doubs, which flows into the Mediterranean. The internal drainage systems three stages of this drainage system evolution, whilst the last two stages were of the Jura fold-thrust belt consist of rivers flowing in synclinal valleys that essentially governed by the subsidence of the Upper Rhine Graben, which are linked by river segments cutting orthogonally through anticlines. The lat- resumed during the late Pliocene. Late Pliocene and Quaternary deep incision ter appear to employ parts of the antecedent Jura Nagelfluh drainage system of the Aare-Rhine/Alpine-Rhine and its tributaries in the Jura Mountains and that had developed in response to Late Burdigalian uplift of the Vosges- Black Forest is mainly attributed to lowering of the erosional base level in the Back Forest Arch, prior to Late Miocene-Pliocene deformation of the Jura continuously subsiding Upper Rhine Graben.
    [Show full text]
  • Provenance Determination of Paleochannel Infillings in the Alsatian Upper Rhine Floodplain Using Mid-Infrared Spectroscopy- Discriminant Analysis
    EGU21-6701, updated on 27 Sep 2021 https://doi.org/10.5194/egusphere-egu21-6701 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Provenance Determination of Paleochannel Infillings in the Alsatian Upper Rhine Floodplain Using Mid-Infrared Spectroscopy- Discriminant Analysis Mubarak Abdulkarim1,4, Stoil Chapkanski2, Damien Ertlen3, Claire Rambeau3, Laurent Schmitt3, Louis Le Bouteiller3, and Frank Preusser1 1Institute of Earth and Environmental Science, University of Freiburg, Germany ([email protected] freiburg.de) 2Laboratory of Physical Geography (LGP), UMR 8591, University Paris 1, Pantheon-Sorbonne – CNRS, Paris France 3Laboratoire Image Ville Environnement (LIVE), UMR 7362, University of Strasbourg-CNRS-ENGEES, Strasbourg, France 4Department of Geology, Federal University Birnin Kebbi, Kebbi, Nigeria The Alsatian Upper Rhine floodplain (northeastern France) is characterized by a complex anastomosing network of paleochannels inherited from Late Glacial braided fluvial pattern of the Rhine system. These paleochannels are filled by mixed or stratified clastic and organic sediments originating from different sediment sources. Identifying these sediments' provenance is critically important for understanding past surface processes and reconstructing the Upper Rhine Valley evolution in the course of the Holocene. This study employed mid-infrared spectroscopy to determine the source of sediments and, therefore, understand which rivers may have contributed to the paleochannel infilling and establish the main patterns of filling through time. Sediment samples with unknown sedimentary provenance were collected in 16 sites consisting of paleochannels and the Ill River's levees. Mid-Infrared spectroscopic analyses were carried out on powdered (< 2 mm) samples using a Frontier Spectrometer (PerkinElmer) equipped with Diffuse Reflectance Infrared Fourier Transform accessory.
    [Show full text]
  • The Rhine and Its Catchment: an Overview
    THE RHINE AND ITS CATCHMENT: AN OVERVIEW n Ecological Improvement n Chemical Water Quality n Survey of the Action Plan on Floods Internationale Kommission zum Schutz des Rheins Commission Internationale pour la Protection du Rhin Internationale Commissie ter Bescherming van de Rijn International Commission for the Protection of the Rhine 2 THE RHINE AND ITS CATCHMENT: AN OVERVIEW n Ecological Improvement n Chemical Water Quality n Survey of the Action Plan on Floods This report presents an overview over ecological improvement along For the EU countries, the EC Water Framework Directive (WFD), the River Rhine and its present chemical water quality. Furthermore, its daughter directives and the EC Floods Directive represent it contains a survey of the implementation of the Action Plan on essential tools for the implementation of the programme “Rhine Floods. 2020”. They imply a joint obligation of the EU states to take measures and emphasize the necessity of integrated management The contamination of the Rhine was the reason for founding the of rivers in river basin districts. International Commission for the Protection of the Rhine (ICPR) Furthermore, and since the last big floods of the Rhine in 1995, the in the 1950s. The Conventions on reducing the contamination by states in the Rhine catchment have invested more than 10 billion € chemicals and chlorides, the joint management of the Sandoz into flood prevention, flood protection and raising awareness for accident on 1st November 1986 and the consecutive activities of all floods in order to reduce flood risks and to thus improve the Rhine bordering countries aimed at sustainably securing the quality protection of man and goods.
    [Show full text]
  • Merkblatt River Rafting Vorderrhein
    Merkblatt River Rafting Vorderrhein Weitere Informationen sowie unsere Allgemeinen Geschäftsbedingungen finden Sie auf www.swissriveradventures.ch. Infohotline für Fragen oder Unklarheiten: +41 (0)81 936 01 04 Allgemeine Informationen: Strecke: Ilanz – Reichenau (ca. 20 km) Treffpunkt: Bahnhof Ilanz Zeit: Vormittagstour 09.35 Uhr Tagestour 10.35 Uhr Nachmittagstour 14.35 Uhr Voraussetzungen: - Mindestalter 10 Jahre (8 Jahre ab Versam) - Normale körperliche Fitness, keine Angst vor Wasser - Teilnahme während einer Schwangerschaft aus Sicherheitsgründen nicht möglich – wir bitten um Ihr Verständnis. Leistungen SRA: - Ausrüstung: Neoprenanzug, Spritzjacke, Neoprenschuhe, Schwimmweste, Helm, Paddel - Instruktion und Begleitung durch geprüften Raftguide - Gepäcktransport zur Ausbootsstelle - Verpflegung: Happy Landing Apéro nach der Tour, Grill-Lunch nur bei Tagestour (vegetarisch auf Anfrage) Was Sie mitbringen müssen: - Badekleidung, Handtuch, Tasche (für Kleidung und Schuhe), persönliche Medikamente, Sonnenschutz und je nach Witterung synthetische Sportunterwäsche (bessere Wärmeisolation). - Bitte beachten Sie, dass wir für persönliche Gegenstände wie Fotoapparat, Schmuck, Brille etc. keine Haftung über- nehmen können. Anreise: Mit dem ÖV: Unsere Startzeiten sind auf den ÖV-Fahrplan abgestimmt. Mit dem Auto: Wir empfehlen Ihnen, Ihr Auto bei der Aus- bootsstelle in Reichenau zu parkieren. Dort befindet sich ein grosser, neu leider kostenpflichtiger Kiesparkplatz (Ad- resse: Im Farsch, 7402 Bonaduz). Der Bahnhof Reichenau ist in 10 min zu Fuss erreichbar; von hier können Sie den Zug nach Ilanz nehmen: Zugverbindungen Reichenau-Tamins – Ilanz Vormittagstour: ab 09.05 Uhr an 09.32 Uhr Tagestour: ab 10.05 Uhr an 10.32 Uhr Nachmittagstour: ab 14.05 Uhr an 14.32 Uhr Sicherheit: Sämtliche Outdoor-Sportarten besitzen ein gewisses Rest- risiko. Um dieses so gering wie möglich zu halten, besitzen wir seit über 10 Jahren das Label „Safety in Adventures“.
    [Show full text]
  • Vorderrhein - Graubünden / Schweiz
    Vorderrhein - Graubünden / Schweiz http://www.kajaktour.de/vorderrhein.htm kajaktour.de Vorderrhein Graubünden / Schweiz . Einer der Klassiker in den Alpen mit einer imposanten Kalksteinschlucht! Startseite Der Vorderrhein ist einer der landschaftlich interessantesten Flüsse der Österreich-Karte Schweiz. Er entspringt in 3000 m hohen Bergen in der Nähe des Gotthardtunnels. Einige Schweiz-Karte Kilometer unterhalb der Stadt Ilanz bis kurz vor Reichenau durchbricht der Fluss die große Frankreich-Karte Flimser-Schlucht. Das besondere an dieser Schlucht sind die riesigen Bergsturzzonen, bei Flüsse denen das typische weiße Kalkgestein freigelegt wurde (s. Bild unten). In Reichenau verbündet sich der Vorderrhein mit dem von Süden Pegel & Wetter hinzufließenden Hinterrhein zum Rhein. Camps & Touristik Die nachfolgend beschriebenen Abschnitte der ganzjährig befahrbaren Flimser-Schlucht liegen ca. 80 km südlich vom Bodensee, 10 km westlich Links der Stadt Chur. Aus Deutschland sind diese Abschnitte am schnellsten über Zürich und die Autobahn N 3 oder über Bregenz und die Autobahn N Gäste 13 zu erreichen. Der Wildwasserfahrer wird sich evtl. eher auf die erste Hälfte der Flimser- Schlucht, d.h. auf den Abchnitt von Ilanz bis Versam, konzentrieren, der sportliche Wanderfahrer dagegen nur auf die zweite Hälfte, d.h. auf den Abschnitt von Versam bis Reichenau. Aber auch beim ersten Abschnitt lassen sich die schwersten Stellen meistens etwas Umfahren. Landschaftlich lohnend sind beide Abschnitte gleichermaßen! Abgesehen von einem Wanderweg und der gelegentlich immer wieder aus Tunneln auftauchenden Eisenbahn verläuft der Vorderrhein nach einigen Kilometern hinter Ilanz bis Reichenau völlig einsam. Aber auch der nicht ganz so populäre Oberlauf des Vorderrheins, z.B. zwischen Compadials und Trun, bietet im Frühsommer sehr interessantes, lohnenswertes Wildwasser.
    [Show full text]
  • 202.1017 Fld Riwa River Without
    VISION FOR THE FUTURE THE QUALITY OF DRINKING WATER IN EUROPE MORE INFORMATION: How far are we? REQUIRES PREVENTIVE PROTECTION OF THE WATER Cooperation is the key word in the activities RESOURCES: of the Association of River Waterworks The Rhine (RIWA) and the International Association The most important of Waterworks in the Rhine Catchment aim of water pollution (IAWR). control is to enable the Cooperation is necessary to achieve waterworks in the structural, lasting solutions. Rhine river basin to Cooperation forges links between produce quality people and cultures. drinking water at any river time. Strong together without And that is one of the primary merits of this association of waterworks. Respect for the insights and efforts of the RIWA Associations of River other parties in this association is growing Waterworks borders because of the cooperation. This is a good basis for successful The high standards for IAWR International Association activities in coming years. the drinking water of Waterworks in the Rhine quality in Europe catchment area Some common activities of the associations ask for preventive of waterworks: protection of the water • a homgeneous international monitoring resources. Phone: +31 (0) 30 600 90 30 network in the Rhine basin, from the Alps Fax: +31 (0) 30 600 90 39 to the North Sea, • scientific studies on substance and parasites Priority must be given E-mail: [email protected] which are relevant for to protecting water [email protected] drinking water production, resources against publication of monitoring pollutants that can The prevention of Internet: www.riwa.org • results and scientific studie get into the drinking water pollution www.iawr.org in annual reports and other water supply.
    [Show full text]
  • Geschiebetransportmodell Rhone
    Morphology and Floods in the Alpine Region Benno Zarn, Hunziker, Zarn & Partner AG, CH-Domat/Ems KHR, From the Source to mouth, a sediment budget of the Rhine River 25-26 March 2015, Lyon France Content 1. Catchment 2. Hydrology 3. River Training - Morphology 4. Bed load transport Alpenrhein 26.03.15 1 1. Catchment drainage area: 6’119 km2 DE average altitude: 1’800 a.s.l. Bodensee glaciation: < 1.4% AT 100-year flood: 3’100 m3/s Ill bed load: 35’000 – 60’000 m3/y CH LI suspended load: 3 Mio. m3/y Landquart Vorderrhein Plessur Hinterrhein Lai da Toma IT Alpenrhein 26.03.15 2 Catchment Geology schist Alpenrhein 26.03.15 3 Catchment DE AT Val Parghera CH LI Val Pargehra IT schist Alpenrhein 26.03.15 4 Catchment tributaries moraine, sediment source Plessur Alpenrhein narrowing Hinterrhein (Domleschg) about 200 years ago 26.03.15 5 Catchment AT 1927 flood – torrent control e.g. Schraubach CH LI Rutschung Schuders um 1950, IT 15 – 20 Mio. m3 Dammbruch Buchs / Schaan 1927 950 [ m a.s.] 900 2003 850 1896 800 750 [m] Alpenrhein 6000 5000 4000 3000 26.03.15 6 river training - morphology Schraubach 2. Hydrology 1999, 2005 Nord, 1910 main divide Süd, 1987 1834, 1868, 1927, 1954, (2002) Alpenrhein 26.03.15 7 hydrology large floods in the past catastrophic floods extrem large floods very large floods large floods 4 3 2 1 0 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600 4 1927 1987 3 2 1 0 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 Alpenrhein 26.03.15 8 hydrology 1927- and 1987 floods Alpenrhein Rhine gorge – ruin aulta (Vorderrhein) 26.03.15 9 hydrology hydro power – storage basin storage volume [106 m3] 800 Ragall Kops Kops 1967 600 Spullersee 1965 Spullersee Panix 1992 Panix Feldkirch Spullersee 400 1976 Gigerwald Buchs Lünersee 1959 Lünersee St.
    [Show full text]
  • Bridge Technology and Historical Scholarship
    Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003, ed. S. Huerta, Madrid: I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados, 2003. Bridge technology and historical scholarship Tom F. Peters Bridges have always fascinated both the layman and the down-to-earth group that we represent, the historian professional. Their structural concepts are simple and of technology. They can teach us how diverse visually easily understood: they are linear, carry traffic, technological thinking is and how our viewpoint of and cross a gulf. Symbolically their concept is more technology changes over time and even how it varies complex: they span from one realm to another, cross the between the fields of engineering, architecture, and deep uncertainties of «troubled waters,» and connect. construction. Bridges demonstrate human ingenuity and the triumph Architects and engineers view the same thing from over nature, contradict the physicallimitations of gravity entirely different standpoints. For istance, a by levitating traffic in the air, and make the impossible connection in the Bayonne Arch Bridge built in New reality. Cultural historians and theoreticians love them, Jersey by the engineer Othmar Amman in 1931 gives and it is not by chance that the Pope carries the title of differing information to engineers and architects pontifex maximus, the «supreme bridge-builder.» (Figures l & 2). When asked what they see in the Because of their linear simplicity and structural clarity, bridge s also provide ideal case studies for that / '" / "" / '\,P / /Y- / (P01NTI) A Figure 1 Steel connection on the Bayonne Bridge over the Kill van Figure 2 KUll' New Jersey by Othmar Ammann, 1931 (photo: T.
    [Show full text]
  • Quaternary Glaciation History of Northern Switzerland
    Quaternary Science Journal GEOzOn SCiEnCE MEDiA Volume 60 / number 2–3 / 2011 / 282–305 / DOi 10.3285/eg.60.2-3.06 iSSn 0424-7116 E&G www.quaternary-science.net Quaternary glaciation history of northern switzerland Frank Preusser, Hans Rudolf Graf, Oskar keller, Edgar krayss, Christian Schlüchter Abstract: A revised glaciation history of the northern foreland of the Swiss Alps is presented by summarising field evidence and chronologi- cal data for different key sites and regions. The oldest Quaternary sediments of Switzerland are multiphase gravels intercalated by till and overbank deposits (‘Deckenschotter’). Important differences in the base level within the gravel deposits allows the distin- guishing of two complex units (‘Höhere Deckenschotter’, ‘Tiefere Deckenschotter’), separated by a period of substantial incision. Mammal remains place the older unit (‘Höhere Deckenschotter’) into zone MN 17 (2.6–1.8 Ma). Each of the complexes contains evidence for at least two, but probably up-to four, individual glaciations. In summary, up-to eight Early Pleistocene glaciations of the Swiss alpine foreland are proposed. The Early Pleistocene ‘Deckenschotter’ are separated from Middle Pleistocene deposition by a time of important erosion, likely related to tectonic movements and/or re-direction of the Alpine Rhine (Middle Pleistocene Reorganisation – MPR). The Middle-Late Pleistocene comprises four or five glaciations, named Möhlin, Habsburg, Hagenholz (uncertain, inadequately documented), Beringen, and Birrfeld after their key regions. The Möhlin Glaciation represents the most extensive glaciation of the Swiss alpine foreland while the Beringen Glaciation had a slightly lesser extent. The last glacial cycle (Birrfeld Glaciation) probably comprises three independent glacial advances dated to ca.
    [Show full text]
  • Ökologische Funktionsfähigkeit Der Fließgewässer Des Ill-Frutz-Schwemmfächers Von Thomas Spindler
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Vorarlberger Naturschau - Forschen und Entdecken Jahr/Year: 1996 Band/Volume: 2 Autor(en)/Author(s): Spindler Thomas Artikel/Article: Ökologische Funktionsfähigkeit der Fliessgewässer des Ill- Frutz-Schwemmfächers. 39-82 ©inatura Dornbirn, Austria, download unter www.biologiezentrum.at Ökologische Funktionsfähigkeit der Fließgewässer des Ill-Frutz-Schwemmfächers von Thomas Spindler VORARLBERGER Zum Autor NATURSCHAU Geboren 1961, Studium Zoologie an der Universität Wien, Dissertation zum 2 Thema Jungfischökologie der freien Fließstrecke der Donau unterhalb Wiens. SEITE 39-82 Promotion im Februar 1989 und Gründung eines Konsulentenbüros für Fischerei Dornbirn 1996 und Gewässerökologie. Schwerpunkt der Tätigkeiten auf Fischereimanagement, angewandte Forschung, ökologische Bewertung von Fließgewässern sowie Untersuchungen zur Umweltverträglichkeit geplanter Gewässereingriffe. Abstract This study follows a concept for an integrated ecological evaluation of running waters within the alluvial rubble system formed by the rivers III, Frutz and Rhine in the most western part of Austria. The assessment of the ecological water quality is, according to the new ÖNORM M 6232, based on the analyses of hydrological, morphological, ichthyological, biological, saprobiological and hydrochemical parameters and was done for the first time in Austria. The results draw a rather sad picture of the actual ecological situation. All investigated brooks, streams and rivers are concerned to be noticably damaged, some of them, especially the larger ones, or at least parts of them, are heavily damaged. The most serious anthropogenius influences are regarded to be the changes of the hydrological regimes due to intensive generation of hydroelectric power in the watershed. This is leading to very strong daily fluctuations of water- levels in the order of one year's high waters.
    [Show full text]
  • Robust Changes and Sources of Uncertainty in the Projected Hydrological Regimes
    Published in "Water Resources Research doi: 10.1002/2014WR015549, 2014" which should be cited to refer to this work. Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments Nans Addor (1), Ole Rössler (2), Nina Köplin (2,*), Matthias Huss (3), Rolf Weingartner (2) and Jan Seibert (1,4) (1) Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland (2) Oeschger Centre for Climate Change Research & Department of Geography, University of Bern, CH-3012 Bern, Switzerland (3) Department of Geosciences, University of Fribourg, CH-1700 Fribourg, Switzerland (4) Department of Earth Sciences, Uppsala University, SE-752 36 Uppsala, Sweden (*) now at: Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden Corresponding author: [email protected] Abstract Projections of discharge are key for future water resources management. These projections are subject to uncertainties, which are difficult to handle in the decision process on adaptation strategies. Uncertainties arise from different sources such as the emission scenarios, the climate models and their post-processing, the hydrological models and natural variability. Here we present a detailed and quantitative uncertainty assessment, based on recent climate scenarios for Switzerland (CH2011 data set) and covering catchments representative for mid-latitude alpine areas. This study relies on a particularly wide range of discharge projections resulting from the factorial combination of 3 emission scenarios, 10 to 20 regional climate models, 2 post- processing methods and 3 hydrological models of different complexity. This enabled us to decompose the uncertainty in the ensemble of projections using analyses of variance (ANOVA). We applied the same modeling setup to 6 catchments to assess the influence of catchment characteristics on the projected streamflow and focused on changes in the annual discharge cycle.
    [Show full text]
  • The Flood Events of 1993/1994 and 1995 in the Rhine River Basin
    Destructive Water: Water-Caused Natural Disasters, their Abatement and Control (Proceedings of the Conference held at Anaheim, California, June 1996). IAHS Publ. no. 239, 1997. 21 The flood events of 1993/1994 and 1995 in the Rhine River basin H. ENGEL Federal Institute of Hydrology, Kaiserin-Augusta-Anlagen 15-17, D-56068 Koblenz, Germany Abstract The causes of the Rhine floods of 1993/1994 and 1995 are described and compared with those of historic events. Information is given on damages and about consequences drawn at national and international levels. GENERAL BACKGROUND The flood events of 1993/1994 and 1995 and their underlying causes were media topics for weeks. Today, discussions continue as to why these floods were more frequent and their flood peaks higher. The main arguments are anthropogenic interference with nature. GEOGRAPHICAL-HYDROLOGICAL OVERVIEW In a comparison with the river basins of Amazonas or Mississippi-Missouri (7.2 x 106 km2 and 3.2 x 106 km2, respectively), the Rhine basin (Fig. 1) with its area of some 190 000 km2 appears less spectacular. However, the Rhine is one of the rivers with the highest streamflow in Europe and has little seasonal variation in discharge. Moreover, the River Rhine is one of the busiest waterways in the world. Nine states share the Rhine basin and about 50 million people live there. With about 100 000 km2, Germany has the greatest land area within the basin. The 1320 km-long course of the river is divided into six major stretches: (a) the Alpine Rhine and (b) the High Rhine, which are
    [Show full text]