Changes Highlighted Final Version Date of Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
No Name of Drug Branded/Generic Drug Class 1 Acipimox Capsule 250Mg Olbetam Nicotinic Acid 1.50 2.14 2 Atorvastatin Calcium 10Mg
MEDICATIONS FOR TREATMENT OF HIGH BLOOD LIPIDS (HYPERLIPIDEMIA) PRICE RANGE (S$) PER NO NAME OF DRUG BRANDED/GENERIC DRUG CLASS TABLET/ CAPSULE/ SACHET 1 ACIPIMOX CAPSULE 250MG OLBETAM NICOTINIC ACID 1.50 - 2.14 STATIN & CALCIUM 4.40 - 4.90 2 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 3.88 - 4.00 3 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.33 - 4.90 4 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.05 - 4.80 5 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS 6 ATORVASTATIN CALCIUM 10MG LIPITOR STATIN 2.60 - 2.60 7 ATORVASTATIN CALCIUM 20MG LIPITOR STATIN 2.99 - 3.00 8 ATORVASTATIN CALCIUM 40MG LIPITOR STATIN 4.10 - 8.20 9 ATORVASTATIN CALCIUM 80MG LIPITOR STATIN 8.45 - 8.95 10 BEZAFIBRATE SR TABLET 400MG BEZALIP FIBRATES 0.00 - 0.00 11 CHOLESTYRAMINE 4G/SACHET GENERIC FIBRATES 1.35 - 2.25 12 CIPROFIBRATE TABLET 100MG MODALIM FIBRATES 1.60 - 1.75 13 FENOFIBRATE CAPSULE 200MG APO-FENO-MICRO FIBRATES 0.71 - 1.07 14 FENOFIBRATE CAPSULE 200MG LIPANTHYL FIBRATES 1.45 - 1.45 15 FENOFIBRATE CAPSULE 145MG LIPANTHYL PENTA 145 FIBRATES 1.75 - 2.05 16 FENOFIBRATE TABLET 160MG LIPANTHYL SUPRA 160 FIBRATES 1.45 - 1.45 17 FLUVASTATIN SODIUM CAPSULE 20MG LESCOL STATIN 1.85 - 1.86 18 FLUVASTATIN SODIUM CAPSULE 40MG LESCOL STATIN 3.29 - 3.39 19 FLUVASTATIN SODIUM CAPSULE 80MG LESCOL XL STATIN 3.60 - 3.93 20 GEMFIBROZIL CAPSULES 300MG GENERIC-IPOLIPID FIBRATES -
Ontario Drug Benefit Formulary Edition 43
Ministry of Health and Long-Term Care Ontario Drug Benefit Formulary/Comparative Drug Index Edition 43 Drug Programs Policy and Strategy Branch Ontario Public Drug Programs Ministry of Health and Long-Term Care Effective February 28, 2018 Visit Formulary Downloads: Edition 43 Table of Contents Part I Introduction ....................................................................................................... I.1 Part II Preamble .......................................................................................................... II.1 Part III-A Benefits List ........................................................................................... III-A.1 Part III-B Off-Formulary Interchangeable Drugs (OFI) ........................................ III-B.1 Part IV Section Currently Not In Use ......................................................................... IV Part V Index of Pharmacologic-Therapeutic Classification .................................... V.1 Part VI-A Facilitated Access - HIV/AIDS .............................................................. VI-A.1 Part VI-B Facilitated Access - Palliative Care ..................................................... VI-B.1 Part VI-C Temporary Facilitated Access - Rheumatology ................................. VI-C.1 Part VII Trillium Drug Program ................................................................................ VII.1 Part VIII Exceptional Access Program (EAP) ........................................................ VIII.1 Part IX-A Nutrition Products ................................................................................ -
Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?
Annals of Medicine ISSN: 0785-3890 (Print) 1365-2060 (Online) Journal homepage: http://www.tandfonline.com/loi/iann20 Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes? M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori To cite this article: M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori (2018): Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?, Annals of Medicine, DOI: 10.1080/07853890.2018.1498118 To link to this article: https://doi.org/10.1080/07853890.2018.1498118 Accepted author version posted online: 06 Jul 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iann20 LIPID LOWERING DRUGS AND INFLAMMATORY CHANGES: AN IMPACT ON CARDIOVASCULAR OUTCOMES? M. Ruscica1*, N. Ferri2*, C. Macchi1, A. Corsini1 and C. R. Sirtori3 1Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; 2Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy; 3Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy *Both authors contributed equally to this work Corresponding Author: Cesare R. Sirtori [email protected] Abstract Inflammatory changes are responsible for maintenance of the atherosclerotic process and may underlie some of the most feared vascular complications. Among the multiple mechanisms of inflammation, the arterial deposition of lipids and particularly of cholesterol crystals is the one responsible for activation of inflammasome NLRP3, followed by the rise of circulating markers, mainly C-reactive protein (CRP). Elevation of lipoproteins, LDL but also VLDL and remnants, associates with increased inflammatory changes and coronary risk. -
Summary of Product Characteristics
Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Aldactone 50 mg Film-coated tablets 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains 50 mg of Spironolactone. For a full list of excipients, see section 6.1 3 PHARMACEUTICAL FORM Film-coated tablet (Tablets) Round, white coloured, biconvex tablet with a peppermint odour embossed ‘SEARLE over 916’ on one side and the other side plain. 4 CLINICAL PARTICULARS 4.1 Therapeutic Indications In the management of refractory oedema associated with congestive cardiac failure; hepatic cirrhosis with ascites and oedema, malignant ascites, nephrotic syndrome, diagnosis and treatment of primary aldosteronism, essential hypertension. Children should only be treated under guidance of a paediatric specialist. There is limited paediatric data available (see sections 5.1 and 5.2). 4.2 Posology and method of administration Administration of Aldactone once daily with a meal is recommended. Posology Adults Congestive heart failure: Usual dose - 100 mg/day. In difficult or severe cases the dosage may be gradually increased up to 200 mg/day. When oedema is controlled, the usual maintenance level is 75 mg/day to 200 mg/day. Severe heart failure in conjunction with standard therapy (New York Heart Association Class III-IV): Based on the Randomized Aldactone Evaluation Study (RALES), treatment in conjunction with standard therapy should be initiated at a dose of spironolactone 25 mg once daily in patients with a serum potassium ≤5.0 mEq/L and serum creatinine ≤2.5 mg/dL. Patients who tolerate 25 mg once daily may have their dose increased to 50 mg once daily as clinically indicated. -
The In¯Uence of Medication on Erectile Function
International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted. -
Interactions Medicamenteuses Index Des Classes Pharmaco
INTERACTIONS MEDICAMENTEUSES INDEX DES CLASSES PHARMACO-THERAPEUTIQUES Mise à jour avril 2006 acides biliaires (acide chenodesoxycholique, acide ursodesoxycholique) acidifiants urinaires adrénaline (voie bucco-dentaire ou sous-cutanée) (adrenaline alcalinisants urinaires (acetazolamide, sodium (bicarbonate de), trometamol) alcaloïdes de l'ergot de seigle dopaminergiques (bromocriptine, cabergoline, lisuride, pergolide) alcaloïdes de l'ergot de seigle vasoconstricteurs (dihydroergotamine, ergotamine, methylergometrine) alginates (acide alginique, sodium et de trolamine (alginate de)) alphabloquants à visée urologique (alfuzosine, doxazosine, prazosine, tamsulosine, terazosine) amidons et gélatines (gelatine, hydroxyethylamidon, polygeline) aminosides (amikacine, dibekacine, gentamicine, isepamicine, kanamycine, netilmicine, streptomycine, tobramycine) amprénavir (et, par extrapolation, fosamprénavir) (amprenavir, fosamprenavir) analgésiques morphiniques agonistes (alfentanil, codeine, dextromoramide, dextropropoxyphene, dihydrocodeine, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil, tramadol) analgésiques morphiniques de palier II (codeine, dextropropoxyphene, dihydrocodeine, tramadol) analgésiques morphiniques de palier III (alfentanil, dextromoramide, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil) analogues de la somatostatine (lanreotide, octreotide) androgènes (danazol, norethandrolone, testosterone) anesthésiques volatils halogénés -
Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11. -
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE -
Journal of Pharmaceutical and Biomedical Analysis Stability Of
Journal of Pharmaceutical and Biomedical Analysis 49 (2009) 519–524 Contents lists available at ScienceDirect Journal of Pharmaceutical and Biomedical Analysis journal homepage: www.elsevier.com/locate/jpba Short communication Stability of selected chlorinated thiazide diuretics K. Deventer a,∗, G. Baele b, P. Van Eenoo a, O.J. Pozo a, F.T. Delbeke a a DoCoLab, UGent, Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30, B-9052 Zwijnaarde, Belgium b Department of Applied Mathematics and Computer Science, Krijgslaan 281, S9, B-9000 Gent, Belgium article info abstract Article history: In sports, diuretics are used for two main reasons: to flush previously taken prohibited substances with Received 6 August 2008 forced diuresis and in sports where weight classes are involved to achieve acute weight loss. A com- Received in revised form 5 November 2008 mon property observed for thiazides is hydrolysis in aqueous media resulting in the formation of the Accepted 6 November 2008 degradation product aminobenzenedisulphonamide. This degradation product can be observed for sev- Available online 13 November 2008 eral thiazides. Because there is limited information regarding the effect of pH, temperature and light on the stability of thiazides, these parameters were investigated for chlorothiaizide, hydrochlorothiazide Keywords: and altizide. For all three compounds the degradation product could be detected after incubation at pH Doping ◦ Urine 9.5 for 48 h at 60 C. At lower pH and temperature the degradation product could not be detected for all Diuretics compounds. When samples were exposed to UV-light altizide and hydrochlorothiazide were photode- Thiazides graded to chlorothiazide. When the degradation rate between the different compounds was compared Sports for a given temperature and pH, altizide is the most unstable compound. -
Tanibirumab (CUI C3490677) Add to Cart
5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor -
The Inhaled Steroid Ciclesonide Blocks SARS-Cov-2 RNA Replication by Targeting Viral
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.258459; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The inhaled steroid ciclesonide blocks SARS-CoV-2 RNA replication by targeting viral 2 replication-transcription complex in culture cells 3 4 Shutoku Matsuyamaa#, Miyuki Kawasea, Naganori Naoa, Kazuya Shiratoa, Makoto Ujikeb, Wataru 5 Kamitanic, Masayuki Shimojimad, and Shuetsu Fukushid 6 7 aDepartment of Virology III, National Institute of Infectious Diseases, Tokyo, Japan 8 bFaculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan 9 cDepartment of Infectious Diseases and Host Defense, Gunma University Graduate School of 10 Medicine, Gunma, Japan 11 dDepartment of Virology I, National Institute of Infectious Diseases, Tokyo, Japan. 12 13 Running Head: Ciclesonide blocks SARS-CoV-2 replication 14 15 #Address correspondence to Shutoku Matsuyama, [email protected] 16 17 Word count: Abstract 149, Text 3,016 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.258459; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 18 Abstract 19 We screened steroid compounds to obtain a drug expected to block host inflammatory responses and 20 MERS-CoV replication. Ciclesonide, an inhaled corticosteroid, suppressed replication of MERS-CoV 21 and other coronaviruses, including SARS-CoV-2, the cause of COVID-19, in cultured cells. The 22 effective concentration (EC90) of ciclesonide for SARS-CoV-2 in differentiated human bronchial 23 tracheal epithelial cells was 0.55 μM. -
Pharmacology on Your Palms CLASSIFICATION of the DRUGS
Pharmacology on your palms CLASSIFICATION OF THE DRUGS DRUGS FROM DRUGS AFFECTING THE ORGANS CHEMOTHERAPEUTIC DIFFERENT DRUGS AFFECTING THE NERVOUS SYSTEM AND TISSUES DRUGS PHARMACOLOGICAL GROUPS Drugs affecting peripheral Antitumor drugs Drugs affecting the cardiovascular Antimicrobial, antiviral, Drugs affecting the nervous system Antiallergic drugs system antiparasitic drugs central nervous system Drugs affecting the sensory Antidotes nerve endings Cardiac glycosides Antibiotics CNS DEPRESSANTS (AFFECTING THE Antihypertensive drugs Sulfonamides Analgesics (opioid, AFFERENT INNERVATION) Antianginal drugs Antituberculous drugs analgesics-antipyretics, Antiarrhythmic drugs Antihelminthic drugs NSAIDs) Local anaesthetics Antihyperlipidemic drugs Antifungal drugs Sedative and hypnotic Coating drugs Spasmolytics Antiviral drugs drugs Adsorbents Drugs affecting the excretory system Antimalarial drugs Tranquilizers Astringents Diuretics Antisyphilitic drugs Neuroleptics Expectorants Drugs affecting the hemopoietic system Antiseptics Anticonvulsants Irritant drugs Drugs affecting blood coagulation Disinfectants Antiparkinsonian drugs Drugs affecting peripheral Drugs affecting erythro- and leukopoiesis General anaesthetics neurotransmitter processes Drugs affecting the digestive system CNS STIMULANTS (AFFECTING THE Anorectic drugs Psychomotor stimulants EFFERENT PART OF THE Bitter stuffs. Drugs for replacement therapy Analeptics NERVOUS SYSTEM) Antiacid drugs Antidepressants Direct-acting-cholinomimetics Antiulcer drugs Nootropics (Cognitive