Pearl Millet Package

Total Page:16

File Type:pdf, Size:1020Kb

Pearl Millet Package pearl millet INTEGRATED PEST MANAGEMENT INNOVATION LAB IPM Innovation Lab Pearl millet package earl millet (Pennisetum glaucum) (Poales: Poaceae) is a crop native WHAT IS IPM? to Africa. Pearl millet is usually grown without irrigation or fertilizers. This crop is grown in well-drained soils and is well-adapted to poor, P Integrated pest management dry, and infertile soils; therefore, it is critically important for food security in (IPM), an environmentally-sound some of the world’s hottest, driest cultivated areas where soils are tough and economical approach to pest and rainfall is low. With climate change affecting weather and rainfall control, was developed in response patterns, it is becoming an increasingly important crop. Pearl millet is the to pesticide misuse in the 1960s. most widely cultivated millet and India and Africa are its largest producers. Pesticide misuse has led to pesticide It is mostly grown in the drier areas of India and Sahelian Africa. Other resistance among prevailing pests, a countries where pearl millet is grown include the United States and Puerto resurgence of non-target pests, loss Rico. The short-cycle cultivars (85–95 days to maturity) are the most widely of biodiversity, and environmental cultivated compared to long-cycle (120–130 days maturity) cultivars and can and human health hazards. Lab (IPM IL) Management Innovation Pest Integrated be grown under irrigation in rotation with higher-value crops. Pearl millet can tolerate higher temperatures but does not tolerate long consecutive drought periods. Pearl millet is used in making porridge and millet flour WHAT ARE is used to make flatbread. Millets have about 73% carbohydrates, 11% IPM PACKAGES? protein, 9% water, and 4% fat. In addition to being an important food source, pearl millet has several medicinal applications (it is gluten-free, can The IPM Innovation Lab has developed and tested robust IPM reduce cholesterol and blood sugar levels, and can address iron and zinc packages, holistic suites of IPM deficiency). The stems can be used for building construction and as roof FOR HEALTH CROP IPM PACKAGES recommendations and practices thatch. In India and Africa, millet is also used as fodder. Pearl millet can for the production of vegetables be used as a cover crop to suppress soil-borne diseases and to increase and other crops. Farmers who use soil organic matter. Major abiotic stresses include long periods of drought, IPM packages in planting, pro- cold weather, and increased nitrate levels. Younger pearl millet plants duction, and throughout the supply encompass greater levels of nitrate, which could be harmful to cattle. Major chain see enhanced profitability insect pests include several species of stem borers, shoot fly (Atherigona in their crops. The recommended approximata Malloch), pearl millet head-miner (Heliocheilus albipunctella practices in IPM packages cover de Joannis), and grain midge (Geromyia penniseti Felt). Major diseases economically significant pest spe- include cercospora leaf spot (Cercospora penniseti Chupp), rust (Puccinia cies over a wide range of cropping substriata Thüm), pearl millet downy mildew (Sclerospora graminicola Sacc. systems across the tropical world, Schroret), ergot (Claviceps fusiformis Loveless), and smut (Tolyposporium resulting in benefits to human penicillariae Bref.). health and the environment. This brochure was created and distributed by the Feed the Future Innovation Lab for Integrated Pest Management (IPM IL). It was made possible through the United States Agency for International Development and the generous support of the American people through USAID Cooperative Agreement No. AID-OAA-L-15-00001 1 diseases identification, descriptions, and images Parthasarathy Seethapathy, Tamil Nadu Agricultural Dr Parthasarathy Seethapathy, Tamil Nadu Agricultural University, University, Bugwood.org Bugwood.org Photos (From left): • Downy mildew • Rust • Ergot USDA, Tifton, GA DISEASES Pearl Millet Downy Milliano (Hypocreales: disease include the devel- Mildew [Sclerospora Clavicipitaceae)] opment of sori on the ears. Foliar and stem diseases graminicola (Sacc.) These sori appear as sacs and Cercospora leaf spot Schröt., (Peronosporales: Ergot is a fungal disease of are initially green and later [Cercospora penniseti Peronosporaceae)] inflorescences and symptoms on turn dark brown or black. Chupp (Capnodiales: include the appearance of These sacs are filled with black Mycosphaerellaceae)] Mildew is a fungal disease viscous creamy-pink exuda- spores of smut. The mature of foliage. The symptoms tions on the flowering heads. spores are released from the sori when the crop is threshed This fungal disease causes include chlorosis at the base Later, it forms a hard-brown and then get mixed with seeds small, dark lesions with grey of a leaf that then extend spiky structure called sclerotia. of non-infected florets, and are centers on leaves. Lesions can towards the tips of the leaves. These sclerotia contain the source of infection for the also be present on stems, and White powdery development alkaloids that are toxic for subsequent crop. Resistant in rainy weather, spores also also occurs on the leaves. humans. Ergot also reduces cultivars are available. become visible. High tempera- Inflorescences of infected grain yields. Initial infection is tures coinciding with periods tillers have the characteristic from spores produced from of high humidity increases green-ear symptoms where the sclerotia in the soil or crop this disease incidence. To grain is replaced by whip-like debris. Secondary infection manage this disease, resistant vegetative structures. When is from the spores produced varieties, weed management, infected at the early stage, in the honeydew. Once the crop rotation, sanitation are plants may die. This fungus stigmas have been pollinated practiced. infects the growing point of they rapidly wither and are each tiller when the leaf and no longer available as the panicle tissues are being infection route for the ergot Rust [Puccinia substriata formed. Primary infection fungus. Heavy rain at flowering (Pucciniales: Pucciniaceae)] is from oospores that live time washes down pollen, in the soil and secondary extending the period at which This is a foliar fungal disease infection happens by the the stigmas are available for and symptoms include small sporangia on the undersides infection as well as providing yellow or white raised spots on of infected leaves. To manage ideal conditions for germination upper and lower leaf surfaces. the problem, proper disposal and sporulation of the ergot More spots occur on the lower of infected plants should be fungus. Host plant resis- side of the leaves and at later done and removal of diseased tance, pollen management, stages spots become bigger plants or tillers at the first sign avoidance, and sanitation are and red-brown surrounded of disease could minimize the best way to manage this by a yellow halo. Rust spores secondary spread. Resistant problem. survive in crop residue in varieties are available for soil and spread through the managing this disease. Smut [Tolyposporium wind. To manage the disease, penicillariae Brefeld disease-resistant varieties are Ear diseases (Ustilaginales: available. Overhead irrigation Ergot [Claviceps Cintractiaceae)] increases incidence of this fusiformis Loveless, disease. Claviceps africana Symptoms of this inflorescence Frederickson, Mantle and 2 insect pests Pest and Diseases Image Library, Bugwood.org Malick Ba, ICRISAT Photos (From left): • Pink stem borer • Green bug • Lema planifrons damage Phil Sloderbeck, Kansas State University, Bugwood.org INSECTS ignefusalis Hampson. It Berliner, Metarhizium aniso- Krauss (Orthoptera: affects mostly late-planted or pliae (Metchnikoff) Sorokin, Acrididae)] Foliage and stem pests late maturing material. The and Beauveria bassiana first-generation larvae cause (Bals.-Criv.) Vuill. Both species cause major Stem borers dead heart and stand loss, yield loss in pearl millet by Pearl millet stem-borer while the second and third Shoot fly [Atherigona feeding on the foliage and [Coniesta ignefusalis cause lodging, disruption approximata Malloch stem. By chewing they cause Hampson (Lepidoptera: of the vascular system and (Diptera: Muscidae)] mechanical damage to the Crambidae)] inhibition of grain formation. plant and the entire plant dies. This is a major seedling Spotted stem borer [Chilo Yield losses range from 15% Entomopathogenic fungus pest, especially in the Indian partellus, Swinhoe, Chilo to total crop failure due to Metarhizium anisopliae and subcontinent. In India, it sacchariphagus Bojer C. ignefusalis. Stem borers Beauveria bassiana can causes 50% grain loss and (Lepidoptera: Crambidae)] become problematic in spring manage grasshoppers. 60% dry fodder yield loss Pink stem borer [Sesamia and summer plantings when during cold weather. It attacks inferens Walker, Sesamia temperatures and insect Green bug [Schizaphis seedlings and boot leaf stage calamistis Hampson reproduction rates are high. graminum Rondani of pearl millet and damages (Lepidoptera: Noctuidae)] Stem borer complex could (Hemiptera: Aphididae)] the earhead. It causes dead White stem borer [Saluria cause yield loss to pearl millet hearts in young plants and Aphids are polyphagous inficita Walker (Lepidoptera: crop. Use of pheromone bait chaffy grains in mature crop. insects that suck sap, colonize Pyralidae)] traps to monitor adult stem Increasing seed rate and in large numbers and secrete borers is recommended.
Recommended publications
  • Integrated Pest Management of the Mexican Rice Borer in Louisiana and Texas Sugarcane and Rice Francis P
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice Francis P. F. Reay-Jones Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Reay-Jones, Francis P. F., "Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice" (2005). LSU Doctoral Dissertations. 761. https://digitalcommons.lsu.edu/gradschool_dissertations/761 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTEGRATED PEST MANAGEMENT OF THE MEXICAN RICE BORER IN LOUISIANA AND TEXAS SUGARCANE AND RICE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the formal requirements for the degree of Doctor of Philosophy in The Department of Entomology by Francis P. F. Reay-Jones B.S., Université Bordeaux 1, 1999 M.S., Université d’Angers/Institut National d’Horticulture, 2001 August 2005 ACKNOWLEDGEMENTS I wish to express my gratitude to my major advisor, Dr. Thomas E. Reagan, for his guidance, motivation, and also for introducing me with great enthusiasm to LSU football and Cajun cuisine. I would like to express my appreciation to my graduate committee, Drs. Benjamin L Legendre, E.
    [Show full text]
  • What We Have Learned About the Bermudagrass Stem Maggot
    WHAT WE HAVE LEARNED ABOUT THE BERMUDAGRASS STEM MAGGOT D.W. Hancock, W.G. Hudson, L.L. Baxter, and J.T. McCullers1 Abstract Since first being discovered in southern Georgia in July 2010, the bermudagrass stem maggot (BSM; Atherigona reversura Villeneuve) has infested and damaged forage bermudagrass (Cynodon dactylon) throughout the southeastern United States. Our objectives for this presentation were to summarize the available literature on this new, invasive species and provide additional insight from what is currently known about other Atherigona spp. The BSM, along with other Atherigona spp., are small, muscid flies native to Central and Southeast Asia. The adult fly of the BSM lays its eggs on bermudagrass leaves. Upon hatching, the BSM larva slips into the sheath, down the tiller, and penetrates the pseudostem at the first node. The BSM larva then feeds on the vascular tissue, sap, and (potentially) the subsequent decaying plant material before exiting the tiller, pupating in the soil, and emerging as a fly. As a result of the larval feeding, bermudagrass exhibits senescence and necrosis of the terminal leaves on the affected shoots. The affected leaves are easily pulled out of the sheath and show obvious damage near the affected node. In severe infestations, over 80% of the tillers in a given area may be affected. There is a paucity of information about the lifecycle of A. reversura and how it can be managed or controlled, but some information is available on basic larva behavior, fly physiology, and the potential differences in resistance among some bermudagrass varieties. Additional research is underway to better understand the lifecycle of this species, confirm and quantify the degree of preference A.
    [Show full text]
  • AR TICLE Recommended Names for Pleomorphic Genera In
    IMA FUNGUS · 6(2): 507–523 (2015) doi:10.5598/imafungus.2015.06.02.14 Recommended names for pleomorphic genera in Dothideomycetes ARTICLE Amy Y. Rossman1, Pedro W. Crous2,3, Kevin D. Hyde4,5, David L. Hawksworth6,7,8, André Aptroot9, Jose L. Bezerra10, Jayarama D. Bhat11, Eric Boehm12, Uwe Braun13, Saranyaphat Boonmee4,5, Erio Camporesi14, Putarak Chomnunti4,5, Dong-Qin Dai4,5, Melvina J. D’souza4,5, Asha Dissanayake4,5,15, E.B. Gareth Jones16, Johannes Z. Groenewald2, Margarita Hernández-Restrepo2,3, Sinang Hongsanan4,5, Walter M. Jaklitsch17, Ruvishika Jayawardena4,5,12, Li Wen Jing4,5, Paul M. Kirk18, James D. Lawrey19, Ausana Mapook4,5, Eric H.C. McKenzie20, Jutamart Monkai4,5, Alan J.L. Phillips21, Rungtiwa Phookamsak4,5, Huzefa A. Raja22, Keith A. Seifert23, Indunil Senanayake4,5, Bernard Slippers3, Satinee Suetrong24, Kazuaki Tanaka25, Joanne E. Taylor26, Kasun M. Thambugala4,5,27, Qing Tian4,5, Saowaluck Tibpromma4,5, Dhanushka N. Wanasinghe4,5,12, Nalin N. Wijayawardene4,5, Saowanee Wikee4,5, Joyce H.C. Woudenberg2, Hai-Xia Wu28,29, Jiye Yan12, Tao Yang2,30, Ying Zhang31 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydianer@ yahoo.com 2CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 4Center of Excellence in Fungal Research, School of Science, Mae Fah
    [Show full text]
  • Genomic Designing of Pearl Millet: a Resilient Crop for Arid and Semi-Arid Environments
    Chapter 6 Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments Desalegn D. Serba, Rattan S. Yadav, Rajeev K. Varshney, S. K. Gupta, Govindaraj Mahalingam, Rakesh K. Srivastava, Rajeev Gupta, Ramasamy Perumal and Tesfaye T. Tesso Abstract Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus ameri- canus (L.) Morrone] is the sixth most important cereal in the world. Today, pearl millet is grown on more than 30 million ha mainly in West and Central Africa and the Indian sub-continent as a staple food for more than 90 million people in agri- culturally marginal areas. It is rich in proteins and minerals and has numerous health benefits such as being gluten-free and having slow-digesting starch. It is grown as a forage crop in temperate areas. It is drought and heat tolerant, and a climate-smart crop that can withstand unpredictable variability in climate. However, research on pearl millet improvement is lagging behind other major cereals mainly due to limited investment in terms of man and money power. So far breeding achievements include the development of cytoplasmic male sterility (CMS), maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for hybrid breeding, dwarfing genes for reduced height, improved input responsive- ness, photoperiod neutrality for short growing season, and resistance to important diseases. Further improvement of pearl millet for genetic yield potential, stress tolerance, and nutritional quality traits would enhance food and nutrition security for people living in agriculturally dissolute environments. Application of molecular technology in the pearl millet breeding program has a promise in enhancing the selection efficiency while shortening the lengthy phenotypic selection process D.
    [Show full text]
  • Species of Atherigona in Andhra Pradesh
    5)PANS 2314): 379 383 Crown copyright, 1977 Species of Atherigona in Andhra Pradesh K. V. Seshu Reddy and J. C. Davies ICRISA T, 1- 11-256 Begurnper, Hyderabad, India. Summary. Records of Arhengona spp, bred from cultlvdted cereals. mtnor m~lletsand wild grass hosts ere glven. A Iota1 01 19 plant hosts of Arherrgona specter IS Ilrted. A. soccata, sorghum shootfly, was by far the commonest spocles present on sorghum and ~t was alw r~ordedfrom malze, pearl m~llet,Echinochloa colonurn. Errochlos procera, Cyrnbopogon sp, and Paspalurn scrobicularum. Numbers of A. roccara bred from grasses were very low. Data showed that specles of Arhe~gonawere In general highly specific In choice of plant host A. lalcafa wds the commonest qrass l~vlng species, but tended to favour Echinochlm colonurn and E. crusgsll~.The dom~nant specter on pearl millet was A. appmximara, on Panicum ps~lopodium,A. pulla and on Digiraria adscendens, A. oryzae. An lnlerertlng dnd important record was the recovery of A. eriochloae from both sorghum and Er~ochloaprocara. Th~srprclcs was prev~ouslyonly known from the peratype descr~bedIn 1926. Other specles were bred from a range of host grasses. Introduction The sorghum shootfly, Atherigonasoccaa Rond., is well known as a serlous pest of sorghum in lndia (Jotwani eral., 1970). It is also a widely distributed and occas~onallydamaglng pest in Africa (Swa~neand Wyatt, 1954; Langham, 1968; Deeming, 1971). Control of the fly has been achieved uslng systemlc ~nsecticides(Jotwani and Sukhanl, 1968; Thobbietal., 1968; Barry, 1972). There have. however, been several reports of only part~alsuccess in controlling the fly with contact insect~cides(Swalne and Wyatt, 1954; Wheatley, 1961) or failure to control tt (Ingram, 1959).
    [Show full text]
  • Lecture No 3 PESTS of SORGHUM, PEARL MILLET and FINGER MILLET
    Lecture No 3 PESTS OF SORGHUM, PEARL MILLET AND FINGER MILLET I. PESTS OF SORGHUM More than 150 species of insects have been reported to damage sorghum. However over a dozen species are very serious and constitute a major constraint in sorghum production. Shoot fly, stem borers, shoot and ear head bug and aphids are serious pests that bring reduction in the yield. Major pests 1. Sorghum Shootfly Atherigona soccata Muscidae Diptera 2. Stem borer Chilo partellus Crambidae Lepidoptera 3. Pink stem borer Sesamia inferens Noctuidae Lepidoptera 4 Shoot bug Peregrinus maidis Delphacidae Hemiptera 5. Earhead bug Calocoris angustatus Miridae Hemiptera 6. Sorghum midge Contarinia sorghicola Cecidomyiidae Diptera Rhopalosiphum maidis, 7. Plant lice (Aphids) Aphididae Hemiptera Melanaphis sacchari Minor Pests 8. Earhead web worm Cryptoblabes gnidiella Pyraustidae Lepidoptera 9. Gram caterpillar Helicoverpa armigera Noctuidae Lepidoptera 10. Plant bug Dolycoris indicus Pentatomidae Hemiptera 11. Stink bug Nezara viridula Pentatomidae Hemiptera 12. Mirid bug Creontiades pallidifer Miridae Hemiptera 13. Slug caterpillar Thosea apierens Cochlididae Lepidoptera 14. Leaf roller Marasmia trapezalis Pyralidae Lepidoptera Cryptocephalus 15. Flea beetle schestedii, Monolepta Chrysomelidae Coleoptera signata Red hairy Amsacta albistriga, 16. Arctiidae Lepidoptera caterpillar A. moorei 17. Semilooper Eublemma silicula Noctuidae Lepidoptera Myllocerus maculosus 18. Weevils Curculionidae Coleoptera M. discolor,M. subfaciatus Wingless 19. Colemania sphenaroides Acrididae Orthoptera grasshopper MAJOR PESTS 1.Sorghum Shootfly: Atherigona soccata (Muscidae: Diptera) Distribution and status Maharashtra, Andhra Pradesh, Tamil Nadu and Karnataka Host range: Maize, ragi, bajra, rice, wheat and grasses Damage symptoms The maggot on hatching migrates to the upper surface of leaf and enters between the leaf sheath and stem.
    [Show full text]
  • TEF: Post-Harvest Operations
    TEF Post-harvest Operations - Post-harvest Compendium TEF: Post-harvest Operations Organization: Institute of Agricultural Research Organization, Holetta Agricultural Research Center (IARO) Author: Alemayehu Refera Edited by AGSI/FAO: Danilo Mejia (Technical), Beverly Lewis (Language & Style) Last reviewed: 14/05/2001 Contents Preface ................................................................................................................................ 2 1. Introduction ........................................................................................................................ 2 1.1 Economic and Social Impact of Tef ............................................................................. 7 1.2 World Trade ................................................................................................................. 9 1.3 Primary Product .......................................................................................................... 10 1.4 Secondary & Derived Products .................................................................................. 10 1.5 Consumer Preference ................................................................................................. 28 2. Post-Production Operations .............................................................................................. 30 2.1 Harvesting .................................................................................................................. 30 2.2 Threshing ...................................................................................................................
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Volumen Completo 31-2
    ISSN-2007-8080 REVISTA MEXICANA DE FITOPATOLOGÍA MEXICAN JOURNAL OF PHYTOPATHOLOGY VOLUMEN 31 NÚMERO 2, 2013 Órgano Internacional de Difusión de la Socied ad Mexicana de Fito patología, A.C. La Revista Mexicana de Fitopatología (ISSN-2007-8080) está incluida en ISI-Thomson Scientific Master Journal List, REDALYC, LATINDEX, AGRIS, BIOSIS, PERIODICA, Review of Plant Pathology en Índice de Revistas Mexicanas de Investigación Científica y Tecnológica del CONACyT. Politica Editorial La Revista Mexicana de Fitopatología (RMF) es una revista internacional que se publica semestralmente por la Sociedad Mexicana de Fitopatología, A.C. (SMF). Se distribuye a 61 bibliotecas dentro de México y 93 más en 57 países. Publica artículos de investigación original concernientes aspectos básicos y aplicados de fitopatología. Se incluyen tópicos generales relacionados con estudios de protección vegetal, así como de hongos, bacterias virus y nematodos fitopatógenos. Artículos de revisión, notas fitopatológicas, descripción de variedades y cartas al editor, también pueden someterse para su publicación. Todos los manuscritos se deben preparar en español o en inglés y enviarse al Editor en Jefe. La guía para autores se encuentra en la página de la SMF (www.socmexfito.org) y aparecerá en el primer número de cada volumen. La comunicación será exclusivamente a través del autor para correspondencia. Para su publicación, los escritos deberán ser revisados y aprobados por árbitros y editores especializados. Los trabajos publicados aparecerán en español e inglés, de lo cual el costo editorial incluirá la traducción total mas $1000 pesos por manuscrito. La subscripción anual de la RMF es de $600 pesos individual y de $1,000 pesos para compañía, biblioteca o institución; para extranjeros es de US$60 individual y US$100 para compañía, biblioteca o institución.
    [Show full text]
  • Assessment of Grain Yield Losses in Pearl Millet Due to the Millet Stemborer, Coniesta Ignefusalis (Hampson)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2003 ASSESSMENT OF GRAIN YIELD LOSSES IN PEARL MILLET DUE TO THE MILLET STEMBORER, CONIESTA IGNEFUSALIS (HAMPSON) Aissetou Drame-Yaye Université Abdou Moumouni Ousmane Youm University of Nebraska-Lincoln, [email protected] Jonathan N. Ayertey University of Ghana Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Drame-Yaye, Aissetou; Youm, Ousmane; and Ayertey, Jonathan N., "ASSESSMENT OF GRAIN YIELD LOSSES IN PEARL MILLET DUE TO THE MILLET STEMBORER, CONIESTA IGNEFUSALIS (HAMPSON)" (2003). Faculty Publications: Department of Entomology. 328. https://digitalcommons.unl.edu/entomologyfacpub/328 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Insect Sci. Applic. Vol. 23, No. 3,Coniesta pp. 259–265, ignefusalis 2003 larval establishment and damage 0191-9040/03 $3.00 + 0.00 259 Printed in Kenya. All rights reserved © 2003 ICIPE ASSESSMENT OF GRAIN YIELD LOSSES IN PEARL MILLET DUE TO THE MILLET STEMBORER, CONIESTA IGNEFUSALIS (HAMPSON) AISSETOU DRAME-YAYE1, OUSMANE YOUM2 AND JONATHAN N. AYERTEY3 1Faculté d’Agronomie, Université Abdou Moumouni , BP 12040 Niamey, Niger; 2 ICRISAT Sahelian Centre, BP 12404, Niamey, Niger; 3 Department of Crop Science, University of Ghana, P. O. Box LG 44, Legon Accra, Ghana (Accepted 4 June 2003) Abstract—Studies were conducted at the ICRISAT Sahelian Centre, Niger, to assess damage and yield loss by the millet stemborer, Coniesta ignefusalis (Lepidoptera: Pyralidae) on Pennisetum glaucum (L.) R.
    [Show full text]
  • OOOO 0086 Promotor:Dr .J.D E Wilde,Hoogleraa R Inhe T Dierkundig Deelva Nd E Planteziektenkunde
    ECOLOGICAL AND PHYSIOLOGICAL ASPECTS OF AESTIVATION-DIAPAUSE IN THE LARVAE OF TWO PYRALID STALK BORERS OF MAIZE IN KENYA in mi •»> ••• - OOOO 0086 promotor:dr .J.d e Wilde,hoogleraa r inhe t dierkundig deelva nd e planteziektenkunde. Inn $z.o /i 3.si P. SCHELTES Ecological and physiological aspects of aestivation-diapause in the larvae of two Pyralid stalk borers of maize in Kenya Proefschrift terverkrijgin g van de graad van doctor ind e landbouwwetenschappen, op gezag vand e rector magnificus, dr.H.C.va n der Plas, hoogleraar in de organische scheikunde, inhe t openbaar te verdedigen opwoensda g 6 September 1978 des namiddags tevie r uur ind e aula van deLandbouwhogeschoo l teWageningen . BIBLIOTHCE* vv'-' ••-••>\GEIV ah iwi$6-os MhJZlot 7%/ STEU.TNCEN I Doord egrot everscheidenhei d ind eaar dva nd eperiodiek erusttoestan dva n insektene nd emechanisme ndi ehieraa ntengrondsla g liggeni selk eklassifikati e vand erusttoestand ,gebaseer d opextern eekologisch efaktore n (tliiller)o fo p internefysiologisch everanderinge nbinne nhe tinsek t (Mansingh)gebrekki ge n daardoorbetrekkelij kzinloos . MilllerH.J . (1970)Nov aAct aLeopoldin a35 ,1-27 . MansinghA . (1971)Can .Ent .103 ,983-1009 . Ditproefschrift . II Hetverdwijne nva nd ekutikulair epigmentati eal skriteriu mvoo rd ediapauz e dientme tvoorzichtighei d teworde ngehanteerd . Ditproefschrift . Ill Konklusiesal sdi eva nHiran obetreffend ed elarval egroe iva n Chilo suppressalis end e<irooagewich tbestanddele nva nhe tdoo rdez erijststengelboorde rgenuttigd e voedsel zijnaanvechtbaar . HiranoC . (1964)Bull .Nat .Inst .Agr .Sci. ,Ser .C , no.17 . Ditproefschrift . IV Dekonklusi eva nChippendal ee nRedd yda td eindukti eva ndiapauz e ind e "southwestern cornborer " Diatraea grandiosella een"extremel ytemperature - dependentprocess "is ,waarbi jfotoperiod eee nondergeschikt ero lspeelt ,berus t oponvoldoend egegevens .
    [Show full text]
  • Coniesta Ignefusalis
    Coniesta ignefusalis: a Handbook of Information Information Bulletin no. 46 International Crops Research Institute for the Semi-Arid Tropics Abstract Citation: Youm, 0., Harris, K.M., and Nwan'ze,K.F. 1996. Coniesta ignefusalis (Hom. pson), the millet stem borer: a handbook of information. (In En. Summaries in En, Fr, Es.) Information Bulletin no. 46. Patancheru 502 324, Andhra Pradesh, India: Interna­ tional Crops Research Institute for theSemi-Arid Tropics. 60 pp. [Part1: Review pp. 1­ 18; Part·2: Annotated bibliography pp. 19-52] ISBN 92-9066-253-0. Order code: IBE 046. A comprehensive review of the biology and management of Coniesta ignefusalis (Ham­ pson), the millet stem borer, is presented in this· two-part bulletin. The information is categorized under pest status and crop loss assessment, taxonomic descriptions, pest biology and ecology. Pest manage!!lent practices including cultural, plant resistance, biological, legislative, chemical, and integrated methods are discussed. Part 2 contains an annotated bibliography ofnearly 150 references published between 1950 and1994. Resume Coniesta ignefusalis (Hampson), Ie foreur du mil:un manuel d'informations. La recherche sur la biologie de Coniesta ignefusalis, Ie foreur du mil, ainsi que sur les methodes de lutte contre l'insecte sont passees en revue dans cette publication adeux parties. L'infor­ mation est regroupee sous diversesrubriques: importance du ravageur et estimation de la perte des cultures, descriptions taxonomiques, biologie et ecologie de l'insecte. La gammes des methodes de lutte culturale, biologique, legislative, chimique et integrees ainsi· que la resistance des pIantes y est egalement exposee. La deuxieme partie du document comprend une bibliographie annotee de pres de 150 references publiees entre 1950 et 1994.
    [Show full text]