Integrated Pest Management of the Mexican Rice Borer in Louisiana and Texas Sugarcane and Rice Francis P

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Pest Management of the Mexican Rice Borer in Louisiana and Texas Sugarcane and Rice Francis P Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice Francis P. F. Reay-Jones Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Reay-Jones, Francis P. F., "Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice" (2005). LSU Doctoral Dissertations. 761. https://digitalcommons.lsu.edu/gradschool_dissertations/761 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTEGRATED PEST MANAGEMENT OF THE MEXICAN RICE BORER IN LOUISIANA AND TEXAS SUGARCANE AND RICE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the formal requirements for the degree of Doctor of Philosophy in The Department of Entomology by Francis P. F. Reay-Jones B.S., Université Bordeaux 1, 1999 M.S., Université d’Angers/Institut National d’Horticulture, 2001 August 2005 ACKNOWLEDGEMENTS I wish to express my gratitude to my major advisor, Dr. Thomas E. Reagan, for his guidance, motivation, and also for introducing me with great enthusiasm to LSU football and Cajun cuisine. I would like to express my appreciation to my graduate committee, Drs. Benjamin L Legendre, E. Barry Moser, Boyd Padgett, Allan T. Showler, Mike J. Stout, and M.O. Way for their constructive guidance and comments during this work. I am grateful to Dr. José Amador from the Texas A&M University Agricultural Research and Extension Station in Weslaco for cooperation and extensive assistance in facilitating my greenhouse studies in the Lower Rio Grande Valley. These studies would not have been possible without the kind help from Weslaco Center employees Soledad Alvarez and Margarita Garcia for helping to rear nearly 2,000 Mexican rice borer moths. Appreciation is also expressed to other center employees Dr. Jorge da Silva, Eddie Hernandez, José Huerta, Dr. T.X. Liu, José Rivera, and Robert Saldaña. I also wish to thank Jaime Cavazos (USDA-ARS Weslaco) in Dr. Showler’s laboratory for helping with free amino acid analyses. My gratitude is also expressed to Dr. L. Ted Wilson from Texas A&M University Agricultural Research and Extension Station in Beaumont for extensive help with the design and analyses of the oviposition and moth movement work. From the Beaumont center, I would also like to thank Mark Nuñez, Cynthia Tribble, Glenn Wallace, and from the Eagle Lake site Eddie Pavliska, James Raabe, Billy Sanders, Bennie Schmidt, and Jack Vawter for technical assistance. ii Appreciation is also expressed to former Texas county agent Marvin Lesikar for assistance in plot maintenance, checking pheromone traps, and irrigation water applications at the Ganado site. For their participation in the Mexican rice borer trapping program, I wish to thank Texas county extension agents: Joel Ardoin, Glenn Avriett, Brent Batchelor, Corrie Bowen, Bruce Chiarello, Roger Havlak, Ron Holcomb, Rick Jahn, Marvin Lesikar, David McGregor, Zan Matthies, John O'Connell, Chris Schneider, Philip Shackelford, and Louisiana county agents: Howard Cormier, Eddie Eskew, Jimmy Flanagan, Jerry Whatley, and Gary Wickie; rice and sugarcane farmers: Milton Beckendorf, Loretta and James Brown, Mike Burnside, Raymond Dollins, Chad Elms, Raymond Franz, Larry Frick, Jacko Garrett, Steven Goetsch, Dan Harris, Kenneth and Buddy Holbrook, David LeCompte, Billy Mann, Randall and Roger Manville, Rodney Pederson, Joey Sliva, Steve Stelly, Ray and Neal Stoesser, W.A. Virnau, Jack Wendt, Terry Whitaker, and J.D. Woods, Jr.; consultants Dan Bradshaw, Gary Bradshaw, Peter Bruno, Mike Burnside, Julio Castillo; Jessica and Monica Aguillard, Travis Aldrich, Derick Beach, Adam Blackwelder, Anthony Brown, Ashley Easley, Luis Espino, Hance Harper, Matt Heiner, Zack Landry, Jeff Lounsbery, Ryan Martin, Ryan McCormick, Josh and Lucas Moore, Josh Turner, Matt Vaglica, Michael Weiss, and Rebecca Wolff (Texas A&M University, Beaumont); Allan Fabre, Tad Hardy (Louisiana Department of Agriculture and Forestry), S.S. Nilakhe (Texas Department of Agriculture); Wayne Thompson (CEA) for their technical assistance. Appreciation is also expressed to Jerry W. McGee for pheromone trap monitoring at the Rohm & Haas research facilities for several years including 1999, 2000 and 2002. iii I would also like to thank Waseem Akbar, Jason Hamm, Chris McAllister (formerly LSU AgCenter), and Fred Posey (formerly LSU AgCenter) for technical assistance. iv TABLE OF CONTENTS ACKNOWLEDGMENTS...................................................................................................ii ABSTRACT.......................................................................................................................ix INTRODUCTION...............................................................................................................1 CHAPTER 1. LITERATURE REVIEW…........................................................................4 CHAPTER 2. RESISTANCE TO THE MEXICAN RICE BORER AMONG LOUISIANA AND TEXAS SUGARCANE CULTIVARS…………………………….20 CHAPTER 3. INTEGRATED TACTICS FOR MANAGING THE MEXICAN RICE BORER IN SUGARCANE...............................................................................................34 CHAPTER 4. OVIPOSITION OF THE MEXICAN RICE BORER ON SUGARCANE AND RICE………………………………………………………………………….……52 CHAPTER 5. MONITORING THE MOVEMENT OF THE MEXICAN RICE BORER IN THE TEXAS RICE BELT.………………….…………………………....…………..82 SUMMARY…………………………………..…………………………………...…..…94 REFERENCES CITED......................................................................................................99 APPENDIX A. SAS CODE FOR CHAPTER 2.....................................................................118 B. SAS CODE FOR CHAPTER 3......................................................................138 C. FIELD MAPS AND SUPPLEMENTARY DATA FOR CHAPTER 2….…143 D. FIELD MAPS AND SUPPLEMENTARY DATA FOR CHAPTER 3……145 E. DATA FOR CHAPTER 4…………………………………………………..148 F. LETTER OF PERMISSION FOR CHAPTER 2…………………………...176 VITA................................................................................................................................177 v LIST OF TABLES 2.1. Injury (± SEM) by E. loftini to five commercial sugarcane cultivars, resultant survival (± SEM) of older larvae inside the stalks, and moth production (± SEM) at Weslaco, Hidalgo County, TX, 2001-2002……………………….…25 2.2. Injury (± SEM) by E. loftini to six sugarcane cultivars, resultant survival (± SEM) of older larvae inside the stalks, and moth production (± SEM) at Ganado, Jackson County, TX, 2002..……………………...……………..…....27 2.3. Name of cultivar, year released for commercial use, parents and sugarcane borer D. saccharalis resistance for cultivars grown commercially in Louisiana….....31 3.1. Statistical comparisons of E. loftini injury and adult emergence from irrigation/cultivar/insecticide experiment on sugarcane at Ganado, TX, 2003- 2004………………………………………………………………………….…40 3.2. Free amino acid accumulations (nanomoles per 10 µL sugarcane juice) in sugarcane leaves from cultivars LCP 85-384 and HoCP 85-845 in irrigated and non-irrigated plots, Ganado, TX, 2003.……………..….…….………….…….44 4.1. Design of E. loftini oviposition studies, Weslaco, TX, 2003-2004……………58 4.2. Sugarcane and rice phenology and physiochemical measurements from greenhouse oviposition test, Weslaco, TX, 2003-2004……...….………….….63 4.3. Multiple contrasts of plant phenology measurements on rice and sugarcane from greenhouse oviposition test, Weslaco, TX, 2003-2004. …….....………….…..64 4.4. Free amino acid accumulations (nanomoles per 10 µL juice) in rice and sugarcane leaves from greenhouse oviposition test, Weslaco, TX, 2003-2004. 66 4.5. Multiple contrasts of free amino acid accumulations (nanomoles per 10 µL juice) in rice and sugarcane leaves from greenhouse oviposition test, Weslaco, TX, 2003-2004....................................................................................................67 4.6. Regression analyses (n = 4) of E. loftini oviposition estimates (egg mass and eggs per egg mass per plant) using plant phenology and physiochemical measurements on rice………….……………………….………………..……..69 4.7. Correlation coefficients (P < 0.1) of E. loftini oviposition estimates with plant phenology and physiochemical measurements.....…………....…………......…70 4.8. Regression analyses (n = 4) of E. loftini eggs per plant oviposition estimate using plant phenology and physiochemical measurements on rice……....……71 vi 4.9. Regression analyses (n = 8) of E. loftini oviposition estimates (egg mass and eggs per egg mass per plant) using plant phenology and physiochemical measurements on sugarcane. ……………………………….……………….…72 4.10. Regression analyses (n = 8) of E. loftini eggs per plant oviposition estimate using plant phenology and physiochemical measurements on sugarcane….….73 5.1. Dates and frequency of E. loftini trapping in the Texas Rice Belt 2000-2004...85 5.2. Characteristics of 95% confidence interval of annual centroids. ………....…...90 vii LIST OF FIGURES 2.1. Proportion of bored internodes
Recommended publications
  • 4Th National IPM Symposium
    contents Foreword . 2 Program Schedule . 4 National Roadmap for Integrated Pest Management (IPM) . 9 Whole Systems Thinking Applied to IPM . 12 Fourth National IPM Symposium . 14 Poster Abstracts . 30 Poster Author Index . 92 1 foreword Welcome to the Fourth National Integrated Pest Management The Second National IPM Symposium followed the theme “IPM Symposium, “Building Alliances for the Future of IPM.” As IPM Programs for the 21st Century: Food Safety and Environmental adoption continues to increase, challenges facing the IPM systems’ Stewardship.” The meeting explored the future of IPM and its role approach to pest management also expand. The IPM community in reducing environmental problems; ensuring a safe, healthy, has responded to new challenges by developing appropriate plentiful food supply; and promoting a sustainable agriculture. The technologies to meet the changing needs of IPM stakeholders. meeting was organized with poster sessions and workshops covering 22 topic areas that provided numerous opportunities for Organization of the Fourth National Integrated Pest Management participants to share ideas across disciplines, agencies, and Symposium was initiated at the annual meeting of the National affiliations. More than 600 people attended the Second National IPM Committee, ESCOP/ECOP Pest Management Strategies IPM Symposium. Based on written and oral comments, the Subcommittee held in Washington, DC, in September 2001. With symposium was a very useful, stimulating, and exciting experi- the 2000 goal for IPM adoption having passed, it was agreed that ence. it was again time for the IPM community, in its broadest sense, to come together to review IPM achievements and to discuss visions The Third National IPM Symposium shared two themes, “Putting for how IPM could meet research, extension, and stakeholder Customers First” and “Assessing IPM Program Impacts.” These needs.
    [Show full text]
  • Lepidoptera Learning Objective
    QUARANTINE SIGNIFICANT LEPIDOPTERA OF CONCERN TO THE SOUTHERN UNITED STATES STEVEN PASSOA USDA/APHIS/PPQ 2007 1 LEPIDOPTERA GOALS . Learn techniques of specimen preparation and submission for CAPS Lepidoptera . Develop a list of Lepidoptera of regulatory concern to the southern USA . Learn to SCREEN samples for these species in the stage most likely to be seen by diagnostic labs using the MAJOR characters. Some species are only defined by a combination of features. In those cases, using the associated key and references listed is more accurate. Give examples from the major superfamilies . Distributions and hosts mentioned are the most likely pathways 2 DEVELOP A LIST . Criteria originally modified from biocontrol of weeds list in July 1991 memo, then modified by NEPSC committee . Now widely used in APHIS as mini-PRA . Survey methodology and taxonomic recognition added to economic criteria . Results are either threats (no pathway), CAPS targets (need to survey), or a dead survey (not practical to consider) 3 WHY LABS HATE TO IDENTIFY LEPIDOPTERA . Secret society of critical characters . Constant name changes . Characters hard to see, covered with scales, or both 4 EGGS . Two types . Do not kill important finds and sent urgent . Plan to rear them in a quarantine facility . Spodoptera and Lymantria (and others) cover the eggs with scales from the female’s body 5 LARVAE . Associate leaf miners with the mine and host . Mouthparts are the “genitalia” of the larval world . Fill vials so there is no air bubble when shipping . “Burp” rubber stoppers and parafilm screw top vials . Can kill and ship in vinegar . Put loose parts in small vials 6 PUPAE .
    [Show full text]
  • DNA Barcodes for Bio-Surveillance
    Page 1 of 44 DNA Barcodes for Bio-surveillance: Regulated and Economically Important Arthropod Plant Pests Muhammad Ashfaq* and Paul D.N. Hebert Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada * Corresponding author: Muhammad Ashfaq Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada Email: [email protected] Phone: (519) 824-4120 Ext. 56393 Genome Downloaded from www.nrcresearchpress.com by 99.245.208.197 on 09/06/16 1 For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. Page 2 of 44 Abstract Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management.
    [Show full text]
  • WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T (51) International Patent Classification: 0552 (US). FENGLER, Kevin; 7250 NW 62nd Ave, P.O. AOlH l/00 (2006.01) C07K 14/195 (2006.01) Box 552, Johnston, IA 5013 1-0552 (US). SCHEPERS, A01H3/00 (2006.01) C12N 15/82 (2006.01) Eric; 7250 NW 62nd Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). UDRANSZKY, Ingrid; 7250 NW 62nd (21) International Application Number: Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). PCT/US20 16/04 1452 (74) Agent: BAUER, S., Christopher; Pioneer Hi-Bred Inter (22) International Filing Date: national, Inc., 7100 N.W. 62nd Avenue, Johnston, IA 8 July 2016 (08.07.2016) 5013 1-1014 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/201,977 6 August 2015 (06.08.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: PIONEER HI-BRED INTERNATIONAL, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, INC. [US/US]; PIONEER HI-BRED INTERNATIONAL, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, INC., 7100 N.W.
    [Show full text]
  • PERFORMANCE REPORT State: Louisiana Project Number: W-55-25 Project Title: Upland Survey Period Covered: July 1, 2010
    PERFORMANCE REPORT State: Louisiana Project Number: W-55-25 Project Title: Upland Survey Period Covered: July 1, 2010 - June 30, 2011 Study Number and Title: V-4, Bobwhite Fall Whistling Surveys Study Objective: To determine relative size and distribution of bobwhite populations in Louisiana. Study Abstract Bobwhite fall whistling counts were conducted statewide along 32 routes (7 additional routes were assumed zeros and 4 others were unable to be run). Fall whistling counts did not differ (P = 0.3482) among the 5 habitat types for 2010. They did, however, differ between 2009 and 2010, with more whistling counts detected in 2009 than in 2010 for both the Northwest mixed shortleaf and loblolly pine-hardwood and Florida Parishes loblolly pine habitats. No coveys were recorded on the Northwest mixed shortleaf and loblolly pine- hardwood or Mississippi/Atchafalaya agricultural belt (0.00 whistles/stop) in 2010 (Tables 1 and 2). Jackson- Bienville WMA, Camp Beauregard, and Vernon District No. 1 routes yielded 0.25, 0.00, and 0.10 whistles/stop, respectively (Table 3). Five (5) summer bobwhite counts were conducted on the Sandy Hollow Wildlife Management Area. Counts ranged from 12-45 (Figure 1). The 2011 mean count was 27.6, which is the same as in 2010. The peak count (45) was lower than the long-term (1986-2010) average peak count of 89.3, but was higher than 8 of the past 10 years (Figure 2). A. Activity: Fall whistling counts were conducted along 37 pre-selected routes to determine relative size and distribution of fall bobwhite populations. The 5 habitat types surveyed were historic longleaf pine, mixed shortleaf and loblolly pine-hardwood, loblolly pine (Florida Parishes), the rice belt and the Mississippi/Atchafalaya agricultural belt.
    [Show full text]
  • A. FINAL Rice Report Cover 9-28-00 #2
    Report by the INSTITUTE FOR SCIENCE, TECHNOLOGY AND PUBLIC POLICY George Bush School of Government and Public Service ECOLOGICAL, ECONOMIC AND POLICY ALTERNATIVES FOR TEXAS RICE AGRICULTURE September 25, 2000 Funded by TEXAS WATER RESOURCES INSTITUTE TR-181 Alston, L.T., Lacher, T.E., Slack, R.D., Vedlitz, A., Woodward, R.T., Franklin, J.C., Canzoneri, N., Torres Conkey, A.A., Cowman, D.F., Harris, J., Henry, A., Kennedy, E., Krohn, M.R., Mizell, K., Nicholson, J., Tierce, K., and Wui, Y. (2000). Ecological, economic, and policy alternatives for Texas rice agriculture. A report by the Institute for Science, Technology and Public Policy in the George Bush School of Government and Public Service to the Texas Water Resources Institute/Agricultural Program, Texas A&M University System. (TWRI Report TR-181). This work may not be reproduced in its entirety, nor in part, without the knowledge and permission of its authors. INSTITUTE FOR SCIENCE, TECHNOLOGY AND PUBLIC POLICY A nonpartisan, interdisciplinary public policy research institute. FACULTY RESEARCHERS Letitia T. Alston, Ph.D. • Institute for Science, Technology and Public Policy Thomas E. Lacher, Ph.D. • Wildlife and Fisheries Sciences R. Douglas Slack, Ph.D. • Wildlife and Fisheries Sciences Arnold Vedlitz, Ph.D. • Political Science • Institute for Science, Technology and Public Policy Richard T. Woodward, Ph.D. • Agricultural Economics POST-DOCTORAL RESEARCH ASSOCIATE James C. Franklin, Ph.D. • Political Science • Institute for Science, Technology and Public Policy RESEARCH ASSISTANTS Nicole Canzoneri • Political Science April Ann Torres Conkey • Wildlife and Fisheries Sciences Deborah F. Cowman • Wildlife and Fisheries Sciences Jeanine Harris • Political Science April Henry • Wildlife and Fisheries Sciences Elizabeth Kennedy • Forestry Sciences Michelle R.
    [Show full text]
  • Warehouses Licensed Under the U.S. Warehouse
    Warehouses United States Department of Agriculture Licensed Under the Farm Service U.S. Warehouse Act Agency Deputy Administrator for Commodity As of December 31, 2014 Operations LICENSED AND BONDED WAREHOUSE The Storage of Agricultural Products Is Locked Into the Marketing System Through -- Farmers Who Produce Warehouse Operators Who Store Bankers Who Loan Merchants Who Buy and Sell Processors Who Manufacture Consumers Who Use Users of Electronic Warehouse Receipts and other Electronic Documents With Assurance of Return of the Stored Commodity in Marketable Condition. And the Key Is Integrity of the Warehouse Operator and the Warehouse Receipt Through -- Financial Responsibility Warehouse Facilities and Practices Management’s Ethics and Capabilities Licensing Bonding Examination Electronic Providers March 2015 BACKGROUND INFORMATION LEGISLATIVE The United States Warehouse Act (USWA) or the Act was originally passed by AUTHORITY the Congress on August 11, 1916. On November 9, 2000, the President signed the Grain Standards and Warehouse Improvement Act of 2000 (Public Law 106-472) which amended the USWA in its entirety and modernized the regulation of Federal warehouses to better reflect current trade and operational practices. The 2000 Act authorizes the Secretary of Agriculture to license and examine public warehouse operators that store agricultural products. It also gives the Secretary broad authority to improve the administration of various aspects involving the trade of agricultural products under the purview of the USWA, including the use, establishment and maintenance of electronic warehouse receipts and other electronic documents for all agricultural products. The USWA is considered a “permissive regulatory act.” It is permissive because it only applies to warehouse operators who voluntarily apply for licensing and regulatory because each licensee must operate under its provisions and be subject to the regulations and licensing agreements administered by the USWA.
    [Show full text]
  • Genomic Designing of Pearl Millet: a Resilient Crop for Arid and Semi-Arid Environments
    Chapter 6 Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments Desalegn D. Serba, Rattan S. Yadav, Rajeev K. Varshney, S. K. Gupta, Govindaraj Mahalingam, Rakesh K. Srivastava, Rajeev Gupta, Ramasamy Perumal and Tesfaye T. Tesso Abstract Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus ameri- canus (L.) Morrone] is the sixth most important cereal in the world. Today, pearl millet is grown on more than 30 million ha mainly in West and Central Africa and the Indian sub-continent as a staple food for more than 90 million people in agri- culturally marginal areas. It is rich in proteins and minerals and has numerous health benefits such as being gluten-free and having slow-digesting starch. It is grown as a forage crop in temperate areas. It is drought and heat tolerant, and a climate-smart crop that can withstand unpredictable variability in climate. However, research on pearl millet improvement is lagging behind other major cereals mainly due to limited investment in terms of man and money power. So far breeding achievements include the development of cytoplasmic male sterility (CMS), maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for hybrid breeding, dwarfing genes for reduced height, improved input responsive- ness, photoperiod neutrality for short growing season, and resistance to important diseases. Further improvement of pearl millet for genetic yield potential, stress tolerance, and nutritional quality traits would enhance food and nutrition security for people living in agriculturally dissolute environments. Application of molecular technology in the pearl millet breeding program has a promise in enhancing the selection efficiency while shortening the lengthy phenotypic selection process D.
    [Show full text]
  • 2015 Winter Whole Grain
    VOL 2. NO 1 AND 2 I WINTER 2015 2015 USA RICE OUTLOOK CONFERENCE: WISH YOU WERE HERE! also in this issue: 2015 USA RICE OUTLOOK CONFERENCE INTERNATIONAL DECEMBER 9-11 TRADE: SHERATON NEW ORLEANS TPP – Why Should Rice Care? NEW ORLEANS, LA PAGE 6 CONFERENCE BROCHURE SPECIAL SECTION REP. RALPH ABRAHAM (R-LA) PAGE 8 INTERNATIONAL PROMOTION: Fortified Rice Good for Food Aid PAGE 22 USA Rice Financial Report PAGE 28 FROM THE CHAIRMAN’S FARM: VOL 2. NO 1 & 2 I WINTER 2015 December is a Time to Meet and Help BY DOW BRANTLEY who we are: IT’S DECEMBER WHICH MEANS IT’S TIME FOR THE USA EDITOR: RICE OUTLOOK CONFERENCE — an exciting and valuable annual Michael Klein gathering of the rice industry. We come together, this year in New [email protected] Orleans, to hear interesting speakers talk not just about the outlook for rice in our states and around the world, but to exchange ideas, concepts, DEPUTY EDITOR: and information, and to help each other achieve our common goal: Deborah Willenborg being a part of a profitable and sustainable rice industry. [email protected] Speaking of helping people, I’ve just returned from a trip to Havana, Cuba, where USA Rice participated in the Havana Trade CONTRIBUTORS: Show, and if there was ever a group of people that need our help, it’s Rebecca Bratter, Bob Cummings, Donna Dittmann, Jim Guinn, Colleen the Cuban people. Klemczewski, Meghan Mahoney, Don I know there are people right here at home that need our help too, Molino, Sarah Moran, Linda Sieh and I personally do what I can, and I know you do too.
    [Show full text]
  • Crambidae Biosecurity Occurrence Background Subfamilies Short Description Diagnosis
    Diaphania nitidalis Chilo infuscatellus Crambidae Webworms, Grass Moths, Shoot Borers Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background The Crambidae is a large, diverse and ubiquitous family of moths that currently comprises 11,500 species globally, with at least half that number again undescribed. The Crambidae and the Pyralidae constitute the superfamily Pyraloidea. Crambid larvae are concealed feeders with a great diversity in feeding habits, shelter building and hosts, such as: leaf rollers, shoot borers, grass borers, leaf webbers, moss feeders, root feeders that shelter in soil tunnels, and solely aquatic life habits. Many species are economically important pests in crops and stored food products. Subfamilies Until recently, the Crambidae was treated as a subfamily under the Pyralidae (snout moths or grass moths). Now they form the superfamily Pyraloidea with the Pyralidae. The Crambidae currently consists of the following 14 subfamilies: Acentropinae Crambinae Cybalomiinae Glaphyriinae Heliothelinae Lathrotelinae Linostinae Midilinae Musotiminae Odontiinae Pyraustinae Schoenobiinae Scopariinae Spilomelinae Short Description Crambid caterpillars are generally cylindrical, with a semiprognathous head and only primary setae (Fig 1). They are often plainly coloured (Fig. 16, Fig. 19), but can be patterned with longitudinal stripes and pinacula that may give them a spotted appearance (Fig. 10, Fig. 11, Fig. 14, Fig. 22). Prolegs may be reduced in borers (Fig. 16). More detailed descriptions are provided below. This factsheet presents, firstly, diagnostic features for the Pyraloidea (Pyralidae and Crambidae) and then the Crambidae. Information and diagnostic features are then provided for crambids listed as priority biosecurity threats for northern Australia.
    [Show full text]
  • Perspectives Pour Une Approche Intégrée De Lutte Contre Coniesta
    ---- -. BIJJlKINA FASO LA. PATRJEOU LA MORT. NOUSVIdNCRONS 1 lD.dlutlD__de _ Bar t/JtIftnIII de !luapdoUllOO (U.o.) lei ColbUa .... ZoaeI Tropk:alea SemI-Ari.... _ ....SdeIlceo de la N...... (I.cJlJ.8.A.T.) _tdaDMIoppemeatRund (LS.NJl.D.R.) ICRlSAT-CeB....sa"""'" Niamey, NJaer MEMOIRE DE FIN D'ETUDES Présenté en vue de l'obtention du Diplôme d'Ingénieur du Développement Rural Option: Agronomie - . ,-, PEJtSPECTIVES POUR UNE APPROCHE INTEGREE DE LUITE , CONTRE CONlESTA (AClGONA) lGNEFUSALlS HAMPSON (LEPIDOPTERA: PYRALIDAE, CRAMBINAE) BORER DE TIGE DU MIL EN ZONE SAHEUENNE Juinl990 ~4...... RESUME Le borer, Coniesta ignefusa7is, est un important ravageur du mil dont les dégâts viennent s'ajouter aux effets complexes d'un écosystème instable On a noté de remarquables interactions insecte-plante-milieu et une étroite synchronisation entre le cycle de développement de l'insecte et les différents stades phénologiQues de la plante. Différentes méthodes de lutte proposées dans la littérature ont été analysées, et l'on a relevé leur inadaptation au contexte écologique sahélien. Cette complexité a justifié la recherche sur de nouvelles techniques de lutte plus adaptées à l'environnement. La mise en évidence de l'émission des hormones s~xuelles par les femelles puis la caractérisation et l'extraction de leurs const i tuants actifs ont cons i tuté une étape importante vers l'util i sati on des pièges à phéromones synthéti ques. Une méthode de criblage basée sur le comptage des trous larvaires a permis de dégager des perspectives pour l'implantation d'un programme de résistance variétale. La fertilisation du sol, le mode et la date de gestion des résidus de récolte ont fait l'objet d'expérimentation et leur rôle dans la régulation des popula­ tions a été évalué.
    [Show full text]
  • Assessment of Grain Yield Losses in Pearl Millet Due to the Millet Stemborer, Coniesta Ignefusalis (Hampson)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2003 ASSESSMENT OF GRAIN YIELD LOSSES IN PEARL MILLET DUE TO THE MILLET STEMBORER, CONIESTA IGNEFUSALIS (HAMPSON) Aissetou Drame-Yaye Université Abdou Moumouni Ousmane Youm University of Nebraska-Lincoln, [email protected] Jonathan N. Ayertey University of Ghana Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Drame-Yaye, Aissetou; Youm, Ousmane; and Ayertey, Jonathan N., "ASSESSMENT OF GRAIN YIELD LOSSES IN PEARL MILLET DUE TO THE MILLET STEMBORER, CONIESTA IGNEFUSALIS (HAMPSON)" (2003). Faculty Publications: Department of Entomology. 328. https://digitalcommons.unl.edu/entomologyfacpub/328 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Insect Sci. Applic. Vol. 23, No. 3,Coniesta pp. 259–265, ignefusalis 2003 larval establishment and damage 0191-9040/03 $3.00 + 0.00 259 Printed in Kenya. All rights reserved © 2003 ICIPE ASSESSMENT OF GRAIN YIELD LOSSES IN PEARL MILLET DUE TO THE MILLET STEMBORER, CONIESTA IGNEFUSALIS (HAMPSON) AISSETOU DRAME-YAYE1, OUSMANE YOUM2 AND JONATHAN N. AYERTEY3 1Faculté d’Agronomie, Université Abdou Moumouni , BP 12040 Niamey, Niger; 2 ICRISAT Sahelian Centre, BP 12404, Niamey, Niger; 3 Department of Crop Science, University of Ghana, P. O. Box LG 44, Legon Accra, Ghana (Accepted 4 June 2003) Abstract—Studies were conducted at the ICRISAT Sahelian Centre, Niger, to assess damage and yield loss by the millet stemborer, Coniesta ignefusalis (Lepidoptera: Pyralidae) on Pennisetum glaucum (L.) R.
    [Show full text]