Acta Mineralogica-Petrographica, Szeged 2008, Vol. 48, pp. 17-31. ACTA Mineralógica Petrographica SHOCK METAMORPHISM AT TERRESTRIAL IMPACT STRUCTURES: MINERALOGICAL AND GEOLOGICAL CONSEQUENCES ARNOLD GUCSIK Max Planck Institute for Chemistry, Department of Geochemistry, Joh.-J.-Becherweg 27., D-55128, Mainz, Germany, e-mail:
[email protected] ABSTRACT The impact cratering as a leading process in the formation of the planetary bodies and surfaces and their geological as well as mineralogical consequences have been summarized in this review article, which is based on PhD. thesis of Arnold Gucsik at Univeristy of Vienna. The purpose of this study is to provide the most important lithological and shock diagnostic features of shock metamorphism accompanied with terrestrial impact structures. The first section of this study gives a brief summary of the formation mechanism and stages of an impact structure as well as a short description of basics of the sock wave physics of an impact event. The next section deals with the types of terrestrial impact structures. The lithological shock-metamorphic indicators and diagnostic shock features in the target rocks are mentioned in the following sections. Key words: shock metamorphism, impact crater, shock wave, impact-derived glasses, shock-induced microdeformations INTRODUCTION years through volcanism, earthquakes, tectonic processes, Shock metamorphism is the sum of irreversible and heat flow. chemical, mineralogical and physical changes in the target • The energy is released in an impact event shattering, materials that occur during the hypervelocity impact event deforming, melting, and even vaporising large volumes of (Melosh 1989). The following chapters have been target rock in a fraction of seconds.