African Meteorite Impact Craters: Characteristics and Geological Importance

Total Page:16

File Type:pdf, Size:1020Kb

African Meteorite Impact Craters: Characteristics and Geological Importance Journal of African Earth Sciences, Vol. 18, No. 4, pp. 263-295, 1994 Pergamon Copyright © 1994 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0899-5362/94 $7.00 + 0.00 0899-5362(94)00044-1 African meteorite impact craters: characteristics and geological importance CHRISTIAN KOEBERLt~ 1Institute of Geochemistry, University of Vienna, Dr.-Karl-Lueger-Ring 1, A-1010 Vienna, Austria. 2Economic Geology Research Unit, Depa~ i.ment of Geology, University of the Witwatemmnd,Johannesburg 2050, South Africa. (Received 26 October 1993 : accepted 12 May 1994) Abslzact - Geologists have realized that impact cratering is the single most important surface-forming and modifying process for the other terrestrial planets and the satellites of all planets. The recognition of impact cratering as an important geological process on earth has been rather slow. However, geologists are now realizing that giant impacts have had a determining influence on the geological and biological evolution of our planet. The study of impact craters allows important conclusions, not only about the origin mid history of our solar system and its planets, but also about a fundamentally important geological process. In addition, impact craters may have a definite economic importance as some craters have been shown to contain important mineral or oil deposits. F'dtesn meteorite impact craters have so far been identified on the African continent:. Amguid (Algeria), Aomunga (Chad), Aouelloul (Mauritania), B.P. (Libya), Bosumtwi (Ghana), Highbury (Zimbabwe), Kalkkop (South Africa), Oasis (Libya), Ouarkziz (Algeria), Roter Kamm (Namibia), Saitpan (South Africa), Talemzane (Algeria), Tenoumer (Mauritania), T'm Bider (Algeria), and V~:lefort (South Africa). This paper presents an overview of these craters, as well as a discussion of impact processes, the recognition of impact cTaters, and the geological arid economic importance of impact craters. R&nml~ - Lea g~ioguea ont maintenantr6alis~ que les crat~rea d'impact constituent le processus majeur de formation et de modification des surfaces des autres plan~,tes telluriques ainsi que de lenrs satellites. La reconnaissance des crat~res d'impact en rant que processus g~ologique important sur Terre est relativement r&'ent. Les g6alogues ont cependant maintenant accept~ clue lea impacts g~ants ont eu une influence d~terminante sur l'~'volutiong~logique et biologique de notre plan~e. L'~,tude des crat~es d'impact m~ne/~ des conclusions importantes non seulement sur l'origine et l'histoire de notre syst~me solaire et ses plan~tes rnais c~galement sur un processus g~ologique qui eat fondamental. De plus, les crat~ms d'impact petrvent avoir une importance &:onomique, en contenant parfois des mm,-',ra~i~tions ou des hydrocarbums. Quinze impacts m@~oritiques ont ~ identifi~ jusqu'A pr~ent sur le continent africain: Amguid (Alg~'ie), Aomunga (Tchad), Aouelloul (Mauritanie), B.P. (Libye), Bosumtwi (Ghana), Highbury (Zimbabwe), Kalkkop (Afrique du Sud), Oasis (Libye), Ouarkziz (Alg~ie), Roter Kamm (Namibie), Saltpan (Afrique du Sud), Talemzane (Alg~rie), Tenoumer (Mauritanie), Tm Bider (Alg~rie) et Vredefort (Afrique du Sud). Cet article p~C,sente une rue d'e~semble de ces crat~rea ainai qu'une discussion du processus d'impact, de la reconnaissance des crat~res d'impact et de l'importance g~'ologique et ~-onomique de ces crat~s. INTRODUCTION The planetary exploration program and extensive lunar research led to the recognition of the fact that The recognition of the importance of impact cratering practically all craters visible on the moon are of impact on earth has been slow in coming. The traditional thesis origin. From there, it is a logical step (that still many of geology calls upon uniformitarianism as postulated geologists were not willing to take) to accept that, over by James Hutton (1726-1797) and Charles LyeU (1797- its histor~ the earth has to have been subjected to an 1875), who laid the foundation to the view that slow, even larger number of impacts than the moon because endogenic processes lead to gradual changes in our of its larger gravitational cross-section. From geological record. Impact is an exogenic, relatively rare, observations of bodies crossing the earth's orbit, violent, and unpredictable event and initially was astronomers have by now a fairly good understanding thought to violate every tenet of uniformitarianism. The of the rate with which asteroids and comets strike the impact origin of craters on the earth (and the moon) earth (Shoemaker et al., 1990; Weissman 1990). For has, therefore, been opposed by traditional geologists example, bodies with diameters >1 km, creating craters over much of our century. The history of impact studies >10 km in diameter, collide with the earth at a frequency is, in some ways, similar to the history of accepting plate of about 4.3xl0~/year (Shoemaker et al., 1990). Our tectonics (Mark 1987 and Marvin 1990 give a historical current understanding of other planets and satellites account of impact cratering,~ with solid surfaces (i.e. Mercur~ Venus, Mars and the 263 264 C. KOEBERL satellites of the outer planets) in the solar system shows that impact is either the most important, or one of the most important, surface-forming or -modifying factors. This leads to the question, if there is such a large number of impacts on earth, where are all the impact Ao,~l_~u/ • W Oan, craters? In attempting to answer this question, one must consider several factors. On the one hand, the earth is v.nga rather unique among the terrestrial planets as its surface is actively reshaped by volcanism and tectonics (rifting, X~v.~m'ntw£ subduction, faulting, etc.) and it has an active atmosphere and hydrosphere. These processes lead to a rapid, in geological terms, obliteration of the impact record on earth, at best leaving either deeply eroded structures, or craters that are covered by later sediments. On the other hand, impact craters have not been of main research interest and therefore many structures have not yet been discovered. Nevertheless, an improved understanding of impact craters has led to the recognition of many structures in recent times. While in 1972 only about 50 confirmed impact craters were Kamm listed, the number had increased to more than 130 by 1991 (Grieve 1991), and currently (1994) stands at around 150. The currently known impact craters in Africa are Figure 1. Distribution of currently known (1994) meteorite impact shown in Fig. 1. and their basic characteristics are listed craters in Africa (see Table 1 for details). in Table 1. However, the discovery rate of impact craters in Africa lags behind that of most of the rest of the world. the target area and attenuate in its environs. It may be Dietz (1965) listed 8 structures as probable young interesting to compare the energy released by typical impact craters, all of which are now confirmed. Four of meteorite impacts to that of "normal" terrestrial those were in Africa. Today, Africa has far from a similar processes, such as earthquakes and volcanic eruptions. share of established young impact craters, even though, Events forming small impact craters (5-10 km diameter) considering cratering rate estimates (Grieve 1984,1987; release about 102"25 ergs, while formation of larger Trefil and Raup 1990), there must be numerous craters craters (50-200 km diameter) releases about 10~'3° ergs in Africa still waiting to be discovered. Considering the (French 1968; Kring 1993; B. French pers.comm. 1994). substantial importance of impact craters for geology, This compares with about 6x1023 ergs for the 1980 but also for a possible economic interest and influence eruption of Mount St. Helens (which is comparable to on the evolution of life on our planet, impact craters in the energy released by the largest U.S. nuclear device - general (and in Africa in particular) deserve more Bravo), about 102. ergs for the big 1906 San Francisco extensive study. In this paper I will summarize criteria earthquake, or the total annual energy release from the for the recognition of impact craters, give a description earth, including heat flow (which is by far the largest of the known African impact craters and conclude with component), volcanism, and earthquakes ofabout 10~ ergs a discussion of their geological importance. (French 1968; Kring 1993; B. French pers.comm. 1994). A number of criteria for the recognition and RECOGNITION OF IMPACT CRATERS confirmation of impact structures have been developed over the past decades. These criteria include: The formation of an impact crater is an almost i) crater morphology instantaneous process. Space limitations do not permit ii) geophysical anomalies me to describe the full basics of cratering mechanics. iii) evidence for shock metamorphism Contrary to some opinions, this process is fairly well iv) presence of meteorites or traces thereof. understood from theoretical and experimental These points will be briefly discussed below. It considerations (Gault et al., 1968; Roddy et al., 1977; should be noted that the impact origin of a structure Melosh 1989). Some important concepts have to be usually cannot be confirmed using a single criterion, mentioned though. It is necessary to consider the unless diagnostic shock metamorphic effects are found. enormous energy released upon the impact of a large Even then, a combination of several criteria, including meteorite, which hits the earth with a velocity between morphological observations, should be used. The about 11 and 72 km s-'. Most of the characteristics of an interested reader is urged to consult some of the impact crater are the consequence of the enormous following works for more details on various aspects of impact energy, which is instantaneously released, and, impact cratering: geological importance of impacts - in particular, the resulting shock waves that penetrate Silver and Schultz (1982), Sharpton and Ward (1990); African meteorite impact craters: characteristics and geological importance 265 Table 1.
Recommended publications
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • Railway Employee Records for Colorado Volume Iii
    RAILWAY EMPLOYEE RECORDS FOR COLORADO VOLUME III By Gerald E. Sherard (2005) When Denver’s Union Station opened in 1881, it saw 88 trains a day during its gold-rush peak. When passenger trains were a popular way to travel, Union Station regularly saw sixty to eighty daily arrivals and departures and as many as a million passengers a year. Many freight trains also passed through the area. In the early 1900s, there were 2.25 million railroad workers in America. After World War II the popularity and frequency of train travel began to wane. The first railroad line to be completed in Colorado was in 1871 and was the Denver and Rio Grande Railroad line between Denver and Colorado Springs. A question we often hear is: “My father used to work for the railroad. How can I get information on Him?” Most railroad historical societies have no records on employees. Most employment records are owned today by the surviving railroad companies and the Railroad Retirement Board. For example, most such records for the Union Pacific Railroad are in storage in Hutchinson, Kansas salt mines, off limits to all but the lawyers. The Union Pacific currently declines to help with former employee genealogy requests. However, if you are looking for railroad employee records for early Colorado railroads, you may have some success. The Colorado Railroad Museum Library currently has 11,368 employee personnel records. These Colorado employee records are primarily for the following railroads which are not longer operating. Atchison, Topeka & Santa Fe Railroad (AT&SF) Atchison, Topeka and Santa Fe Railroad employee records of employment are recorded in a bound ledger book (record number 736) and box numbers 766 and 1287 for the years 1883 through 1939 for the joint line from Denver to Pueblo.
    [Show full text]
  • 2017 ANNUAL REPORT 2017 Annual Report Table of Contents the Michael J
    Roadmaps for Progress 2017 ANNUAL REPORT 2017 Annual Report Table of Contents The Michael J. Fox Foundation is dedicated to finding a cure for 2 A Note from Michael Parkinson’s disease through an 4 Annual Letter from the CEO and the Co-Founder aggressively funded research agenda 6 Roadmaps for Progress and to ensuring the development of 8 2017 in Photos improved therapies for those living 10 2017 Donor Listing 16 Legacy Circle with Parkinson’s today. 18 Industry Partners 26 Corporate Gifts 32 Tributees 36 Recurring Gifts 39 Team Fox 40 Team Fox Lifetime MVPs 46 The MJFF Signature Series 47 Team Fox in Photos 48 Financial Highlights 54 Credits 55 Boards and Councils Milestone Markers Throughout the book, look for stories of some of the dedicated Michael J. Fox Foundation community members whose generosity and collaboration are moving us forward. 1 The Michael J. Fox Foundation 2017 Annual Report “What matters most isn’t getting diagnosed with Parkinson’s, it’s A Note from what you do next. Michael J. Fox The choices we make after we’re diagnosed Dear Friend, can open doors to One of the great gifts of my life is that I've been in a position to take my experience with Parkinson's and combine it with the perspectives and expertise of others to accelerate possibilities you’d improved treatments and a cure. never imagine.’’ In 2017, thanks to your generosity and fierce belief in our shared mission, we moved closer to this goal than ever before. For helping us put breakthroughs within reach — thank you.
    [Show full text]
  • Interpretations of Gravity Anomalies at Olympus Mons, Mars: Intrusions, Impact Basins, and Troughs
    Lunar and Planetary Science XXXIII (2002) 2024.pdf INTERPRETATIONS OF GRAVITY ANOMALIES AT OLYMPUS MONS, MARS: INTRUSIONS, IMPACT BASINS, AND TROUGHS. P. J. McGovern, Lunar and Planetary Institute, Houston TX 77058-1113, USA, ([email protected]). Summary. New high-resolution gravity and topography We model the response of the lithosphere to topographic loads data from the Mars Global Surveyor (MGS) mission allow a re- via a thin spherical-shell flexure formulation [9, 12], obtain- ¡g examination of compensation and subsurface structure models ing a model Bouguer gravity anomaly ( bÑ ). The resid- ¡g ¡g ¡g bÓ bÑ in the vicinity of Olympus Mons. ual Bouguer anomaly bÖ (equal to - ) can be Introduction. Olympus Mons is a shield volcano of enor- mapped to topographic relief on a subsurface density interface, using a downward-continuation filter [11]. To account for the mous height (> 20 km) and lateral extent (600-800 km), lo- cated northwest of the Tharsis rise. A scarp with height up presence of a buried basin, we expand the topography of a hole Ö h h ¼ ¼ to 10 km defines the base of the edifice. Lobes of material with radius and depth into spherical harmonics iÐÑ up h with blocky to lineated morphology surround the edifice [1-2]. to degree and order 60. We treat iÐÑ as the initial surface re- Such deposits, known as the Olympus Mons aureole deposits lief, which is compensated by initial relief on the crust mantle =´ µh c Ñ c (hereinafter abbreviated as OMAD), are of greatest extent to boundary of magnitude iÐÑ . These interfaces the north and west of the edifice.
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa Region, Mars, with Insights from Modern and Ancient Terrestrial Analogs
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa region, Mars, with Insights from Modern and Ancient Terrestrial Analogs Robert Eric Jacobsen II University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geology Commons Recommended Citation Jacobsen, Robert Eric II, "Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa region, Mars, with Insights from Modern and Ancient Terrestrial Analogs. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4098 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert Eric Jacobsen II entitled "Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa region, Mars, with Insights from Modern and Ancient Terrestrial Analogs." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Devon M. Burr,
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • General Vertical Files Anderson Reading Room Center for Southwest Research Zimmerman Library
    “A” – biographical Abiquiu, NM GUIDE TO THE GENERAL VERTICAL FILES ANDERSON READING ROOM CENTER FOR SOUTHWEST RESEARCH ZIMMERMAN LIBRARY (See UNM Archives Vertical Files http://rmoa.unm.edu/docviewer.php?docId=nmuunmverticalfiles.xml) FOLDER HEADINGS “A” – biographical Alpha folders contain clippings about various misc. individuals, artists, writers, etc, whose names begin with “A.” Alpha folders exist for most letters of the alphabet. Abbey, Edward – author Abeita, Jim – artist – Navajo Abell, Bertha M. – first Anglo born near Albuquerque Abeyta / Abeita – biographical information of people with this surname Abeyta, Tony – painter - Navajo Abiquiu, NM – General – Catholic – Christ in the Desert Monastery – Dam and Reservoir Abo Pass - history. See also Salinas National Monument Abousleman – biographical information of people with this surname Afghanistan War – NM – See also Iraq War Abousleman – biographical information of people with this surname Abrams, Jonathan – art collector Abreu, Margaret Silva – author: Hispanic, folklore, foods Abruzzo, Ben – balloonist. See also Ballooning, Albuquerque Balloon Fiesta Acequias – ditches (canoas, ground wáter, surface wáter, puming, water rights (See also Land Grants; Rio Grande Valley; Water; and Santa Fe - Acequia Madre) Acequias – Albuquerque, map 2005-2006 – ditch system in city Acequias – Colorado (San Luis) Ackerman, Mae N. – Masonic leader Acoma Pueblo - Sky City. See also Indian gaming. See also Pueblos – General; and Onate, Juan de Acuff, Mark – newspaper editor – NM Independent and
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • Appendix a Conceptual Geologic Model
    Newberry Geothermal Energy Establishment of the Frontier Observatory for Research in Geothermal Energy (FORGE) at Newberry Volcano, Oregon Appendix A Conceptual Geologic Model April 27, 2016 Contents A.1 Summary ........................................................................................................................................... A.1 A.2 Geological and Geophysical Context of the Western Flank of Newberry Volcano ......................... A.2 A.2.1 Data Sources ...................................................................................................................... A.2 A.2.2 Geography .......................................................................................................................... A.3 A.2.3 Regional Setting ................................................................................................................. A.4 A.2.4 Regional Stress Orientation .............................................................................................. A.10 A.2.5 Faulting Expressions ........................................................................................................ A.11 A.2.6 Geomorphology ............................................................................................................... A.12 A.2.7 Regional Hydrology ......................................................................................................... A.20 A.2.8 Natural Seismicity ...........................................................................................................
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]