Bruguière, 1792) (MOLLUSCA, GASTROPODA, NERITIDAE

Total Page:16

File Type:pdf, Size:1020Kb

Bruguière, 1792) (MOLLUSCA, GASTROPODA, NERITIDAE UNIVERSIDADE FEDERAL DO CEARÁ INSTITUTO DE CIÊNCIAS DO MAR - LABOMAR PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MARINHAS TROPICAIS CRISTIANE XEREZ BARROSO ANATOMIA E DESENVOLVIMENTO INTRACAPSULAR DE Neritina zebra (Bruguière, 1792) (MOLLUSCA, GASTROPODA, NERITIDAE) FORTALEZA 2009 CRISTIANE XEREZ BARROSO ANATOMIA E DESENVOLVIMENTO INTRACAPSULAR DE Neritina zebra (Bruguière, 1792) (MOLLUSCA, GASTROPODA, NERITIDAE) Dissertação submetida à Coordenação do Curso de Pós-Graduação em Ciências Marinhas Tropicais, da Universidade Federal do Ceará, como requisito parcial para a obtenção do grau de Mestre em Ciências Marinhas. Orientadora: Profa. Dra. Helena Matthews- Cascon FORTALEZA 2009 CRISTIANE XEREZ BARROSO ANATOMIA E DESENVOLVIMENTO INTRACAPSULAR DE Neritina zebra (Bruguière, 1792) (MOLLUSCA, GASTROPODA, NERITIDAE) Dissertação submetida à Coordenação do Curso de Pós-Graduação em Ciências Marinhas Tropicais, da Universidade Federal do Ceará, como requisito parcial para a obtenção do grau de Mestre em Ciências Marinhas. Aprovada em 26/03/2009 BANCA EXAMINADORA _____________________________________________ Profa. Dra. Helena Matthews-Cascon (Orientadora) Universidade Federal do Ceará _____________________________________________ Profa. Dra. Cristina de Almeida Rocha-Barreira Instituto de Ciências do Mar – LABOMAR / UFC _____________________________________________ Prof. Dr. Luiz Ricardo Lopes de Simone Museu de Zoologia da Universidade de São Paulo - MZUSP À minha Orientadora Helena Matthews-Cascon, dedico AGRADECIMENTOS À professora Dra. Helena Matthews-Cascon por ter aceitado me orientar durante esses cinco anos, pela sabedoria, por ter me apresentado uma de suas grandes paixões (os moluscos) e pelo coração do tamanho do mundo; A minha família, Graça, Jeovairton, Daniel e Davi, por todo o amor e apoio, toda confiança e felicidade. A Eduardo Freitas, por surgir em minha vida e me mostrar um novo jeito de ver o mundo; Ao professor Dr. Luiz Ricardo Simone, do Museu de Zoologia da Universidade de São Paulo, pela grande ajuda e pela acolhida na assustadora cidade de São Paulo; A Antonio Carlos (Leão), morador de Caucaia, por ter me levado em sua canoa e me ajudado nas coletas no rio Ceará; Ao professor Dr. Paulo Cascon pelas várias ajudas e pelas ironias que sempre me fazem rir; À professora Dra. Cristina Rocha pela ajuda com a bibliografia; A TODOS do Laboratório de Invertebrados Marinhos do Ceará (LIMCE) pelos momentos de descontração e aprendizado pessoal e profissional; Aos amigos que fiz no mestrado, Lucas Buruaem, Luis Eduardo Freitas (Lula), Buda e Flavia Lima Verde; À Marcionília Pimentel, pela eterna luz que irradia, pelos estudos pré-mestrado e pelas tardes felizes; Aos amigos Amanda Silvino, Leonardo Peres, Marcelo Moro, Marcelo Soares, Marcelo Teles, Mariana Lima e Samuel Carleial, que mesmo “distantes”, fazem parte de minha vida; À Tatiane Garcia pela ajuda nos experimentos de reprodução; A Helton pelos desenhos; A Celli Muniz e Daniel, do Laboratório de Fitopatologia da EMBRAPA, e Luis Flávio Gaspar Herculano, do Laboratório de Caracterização de Materiais (LACAM-UFC) pela ajuda com a microscopia eletrônica de varredura; Aos professores do curso de Pós-Graduação em Ciências Marinhas Tropicais, Labomar – UFC, pela contribuição em minha formação científica; A Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) pela concessão da bolsa de mestrado. “Se os estudantes querem uma carreira na área das Ciências, eles precisam de três qualidades em abundância: uma infindável curiosidade sobre o mundo, uma paixão para fazer o trabalho árduo necessário e uma vontade de trabalhar sob condições adversas e com pouco dinheiro.” Geerat Vermeij, biólogo LISTA DE FIGURAS Figura 1.1 - Morfometria da concha de Neritina zebra. 1. Altura da concha; 2. Largura da concha........................................................................................................... 25 Figura 1.2 – Concha de adulto de Neritina zebra. A. Vista dorsal; B. Vista ventral.............................................................................................................................. 30 Figura 1.3 – Microscopia eletrônica de varredura de uma concha jovem de N. zebra. A. Vista geral da concha, mostrando as linhas de crescimento; B. Voltas da protoconcha e da teleoconcha; C. Protoconcha em maior detalhe; D. Início da erosão da protoconcha, em destaque........................................................................................... 30 Figura 1.4 – Conchas de Neritina zebra, apresentado diferentes cores, variando de marrom bem escuro a amarelo. A última concha do lado direito da segunda fileira foi tratada com hipoclorito de sódio..................................................................................... 31 Figura 1.5 – Desenhos de conchas de Neritina zebra, apresentando diferentes padrões das listras axiais. Estas podem ser retas, curvas ou em “ziguezague”, com alguns espécimes não apresentando listras...................................................................... 31 Figura 1.6 – Septo transversal presente na parte interna da concha de Neritina zebra.. 32 Figura 1.7 – Opérculos calcários de N. zebra de diferentes tamanhos. A. Vista externa; B. Vista interna, destacando a apófise bifurcada. Legenda: ap. apófise........... 32 Figura 1.8 – Desenho esquemático do opérculo calcário de N. zebra. Legenda: ap. apófise.............................................................................................................................. 32 Figura 1.9 – Coloração do corpo de Neritina zebra. A. Animal fixado; B, C e D. Animal vivo..................................................................................................................... 33 Figura 1.10 – Osfrádio (em destaque) de Neritina zebra, localizado à frente da membrana suspensória da brânquia (br), do lado esquerdo do manto e à frente do final anterior do músculo columelar esquerdo (mc). Legenda: c. cabeça....................... 33 Figura 1.11 - Anatomia de Neritina zebra. A. Vista dorsal de uma fêmea com o corpo coberto pelo manto (ma); B. Vista dorsal de uma fêmea com o manto retirado, destacando o posicionamento da brânquia (br) na cavidade palial; C. Região cefálica de uma fêmea, destacando os omatóforos com olhos na extremidade (o), tentáculos (t) e a boca circular (b), com finas projeções sensoriais; D. Corte longitudinal na região cefálica, destacando os “bolsters” (bo) e rádula (ra); E. e F. Vista ventral de uma fêmea, destacando o formato do músculo columelar (mc) e a inserção do opérculo (op) no pé. Legenda: c. cabeça; mv. massa visceral; p. pé.............................. 34 Figura 1.12 – Desenho esquemático do músculo columelar de N. zebra. Legenda: mc. músculo columelar; op. opérculo; p. pé.................................................................. 35 Figura 1.13 – Coração de Neritina zebra, apresentando um átrio (at) e um ventrículo (ve). Legenda: br. brânquia; c. cabeça............................................................................ 35 Figura 1.14 – Microscopia eletrônica de varredura da rádula de Neritina zebra. A. Vista geral da rádula; B. Vista parcial da rádula, destacando os dentes raquidiano (r), primeiro lateral (l1) e quinto lateral (l5); C. Vista parcial da rádula, detalhando os dentes raquidiano (r) e primeiro lateral (l1); D. Vista parcial da rádula, destacando os dentes primeiro lateral (l1), terceiro lateral (l3), quinto lateral (l5) e marginais (m); E. Vista parcial da rádula, detalhando os dentes terceiro lateral (l3), quarto lateral (l4), quinto lateral (l5) e marginais (m); F. Vista parcial da rádula, detalhando os dentes marginais, serreados e em forma de cunha (m)............................................................... 36 Figura 1.15 – Microscopia óptica da rádula de Neritina zebra. A. Vista geral da rádula; B. Vista parcial da rádula, destacando os dentes raquidiano (r) e primeiro lateral (l1); C. Vista parcial da rádula, destacando os dentes primeiro lateral (l1), quinto lateral (l5) e marginais (m); D. Vista parcial da rádula, detalhando os dentes primeiro lateral (l1), segundo lateral (l2) e terceiro lateral (l3); E. Vista parcial da rádula, detalhando quinto dente lateral (l5); F. Vista parcial da rádula, detalhando os dentes segundo lateral (l2), terceiro lateral (l3) e quarto lateral (l4); G. Vista parcial da rádula, detalhando os dentes marginais (m)............................................................... 36 Figura 1.16 - Anatomia de N. zebra - Sistema reprodutor masculino; A. Vista anterior dorsal de um macho, destacando o pênis cefálico (pc); B. Detalhe do pênis cefálico (pc), destacando o sulco (s) e a papila (pa) presentes nessa estrutura............... 37 Figura 1.17 - Anatomia de N. zebra - Sistema reprodutor masculino; A. Vista interna da cavidade do manto de um macho, em destaque partes do sistema reprodutor masculino; B. Parte do sistema reprodutor masculino, destacando o ducto espermático (de), os testículos (te) e a próstata (pr); C. Detalhe da glândula prostática (pr), reto (re) e ânus (a).................................................................................. 37 Figura 1.18 – Desenho esquemático de um macho de N. zebra, mostrando parte de seu sistema reprodutor. Legenda: c. cabeça; mc. músculo columelar; mv. massa visceral; p. pé; pa. papila; pc. pênis cefálico; s. sulco; t. tentáculo................................ 38 Figura 1.19 – Desenho esquemático do sistema reprodutor masculino de N. zebra. Legenda: a. ânus; de. ducto espermático;
Recommended publications
  • Hatching Plasticity in the Tropical Gastropod Nerita Scabricosta
    Invertebrate Biology x(x): 1–10. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. DOI: 10.1111/ivb.12119 Hatching plasticity in the tropical gastropod Nerita scabricosta Rachel Collin,a Karah Erin Roof, and Abby Spangler Smithsonian Tropical Research Institute, 0843-03092 Balboa, Panama Abstract. Hatching plasticity has been documented in diverse terrestrial and freshwater taxa, but in few marine invertebrates. Anecdotal observations over the last 80 years have suggested that intertidal neritid snails may produce encapsulated embryos able to signifi- cantly delay hatching. The cause for delays and the cues that trigger hatching are unknown, but temperature, salinity, and wave action have been suggested to play a role. We followed individual egg capsules of Nerita scabricosta in 16 tide pools to document the variation in natural time to hatching and to determine if large delays in hatching occur in the field. Hatching occurred after about 30 d and varied significantly among tide pools in the field. Average time to hatching in each pool was not correlated with presence of potential preda- tors, temperature, salinity, or pool size. We also compared hatching time between egg cap- sules in the field to those kept in the laboratory at a constant temperature in motionless water, and to those kept in the laboratory with sudden daily water motion and temperature changes. There was no significant difference in the hatching rate between the two laboratory treatments, but capsules took, on average, twice as long to hatch in the laboratory as in the field.
    [Show full text]
  • Reassignment of Three Species and One Subspecies of Philippine Land Snails to the Genus Acmella Blanford, 1869 (Gastropoda: Assimineidae)
    Tropical Natural History 20(3): 223–227, December 2020 2020 by Chulalongkorn University Reassignment of Three Species and One Subspecies of Philippine Land Snails to the Genus Acmella Blanford, 1869 (Gastropoda: Assimineidae) KURT AUFFENBERG1 AND BARNA PÁLL-GERGELY2* 1Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA 2Plant Protection Institute, Centre for Agricultural Research, Herman Ottó Street 15, Budapest, H-1022, HUNGARY * Corresponding author. Barna Páll-Gergely ([email protected]) Received: 30 May 2020; Accepted: 22 June 2020 ABSTRACT.– Three species of non-marine snails (Georissa subglabrata Möllendorff, 1887, G. regularis Quadras & Möllendorff, 1895, and G. turritella Möllendorff, 1893) and one subspecies (G. subglabrata cebuensis Möllendorff, 1887) from the Philippines are reassigned from Georissa Blanford 1864 (Hydrocenidae Troschel, 1857) to Acmella Blanford, 1869 (Assimineidae H. Adams & A. Adams, 1856) based on shell characters. KEY WORDS: Philippines, Hydrocenidae, Assimineidae, Georissa, Acmella INTRODUCTION despite that their shell characters were very unlike those of Georissa (see Discussion). The land snail fauna of the Republic of the Möllendorff (1898: 208) assigned these Philippines is immense with approximately species to “Formenkreis der Georissa 2,000 species and subspecies described subglabrata Mldff.” without definition. (unpublished information, based on species Georissa subglabrata cebuensis was omitted recorded in the literature). Very few have without discussion. Zilch (1973) retained been reviewed in recent times. Eleven these species in Georissa with no mention species of Georissa W.T. Blanford 1864 of Möllendorff’s Formenkreis. (type species: Hydrocena pyxis Benson, The first author conducted a cursory 1856, by original designation, Hydrocenidae review of Philippine Georissa during Troschel, 1857) have been recorded from research resulting in the description of G.
    [Show full text]
  • 2347-503X Assessment of Coastal Pollution Using Faunal Composit
    Research Chronicler, International Multidisciplinary Refereed Peer Reviewed Indexed Research Journal ISSN: Print: 2347-5021 www.research-chronicler.com ISSN: Online: 2347-503X Assessment of Coastal Pollution Using Faunal Composition of Macrobenthos from Panvel Creek, Navi Mumbai, West Coast of India Prabhakar Ramchandra Pawar,1 Leena N. Meshram,2 Sunil M. Udawant,3 Rauphunnisa F. Inamdar4 1,2,3Mahatma Phule Arts, Science & Commerce College, Panvel, Dist. – Raigad, Navi Mumbai, (M.S.) India 4Veer Wajekar Arts, Science & Commerce College, Phunde, Uran, Dist. – Raigad, Navi Mumbai, (M.S.) India Abstract Diversity of macrobenthos from Panvel creek remain poorly known. Here, the species composition and abundance of macrobenthos is explored from June 2018 to May 2019 to assess the ecological status of the creek. 18 species of macrobenthic fauna consisting of 14 genera, 12 families, 06 orders and 05 classes were recorded. The most abundant taxa were polychaetes, crustaceans, gastropods and pelecypods. Species belonging to Polynoidae, Cerithiidae, Potamididae, Neritidae and Trapezidae shows highest distribution and abundance. The creek is dominated by Perinereis cultrifera, Clypeomorus bifasciata, Potamides cingulatus, Nerita oryzarum and Neotrapezium sublaevigatum. N. sublaevigatum of the family Trapezidae from the class Bivalvia is recorded as an opportunistic taxa which exploits disturbed condition due to environmental stress. This study showed that at present though the creek is resourceful and supports the coastal marine life, is under considerable stress of anthropogenic inputs. Coastal environment of Panvel creek is deteriorating due to ongoing construction of Navi Mumbai International Airport and unplanned development activities. Present information could be helpful as a baseline data for further study of anthropogenic inputs on coastal ecosystem of Panvel creek.
    [Show full text]
  • Observations on Neritina Turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions
    Hristov, K.K. AvailableInd. J. Pure online App. Biosci. at www.ijpab.com (2020) 8(5), 1-10 ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2582-2845.8319 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2020) 8(5), 1-10 Research Article Peer-Reviewed, Refereed, Open Access Journal Observations on Neritina turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions Kroum K. Hristov* Department of Chemistry and Biochemistry, Medical University - Sofia, Sofia - 1431, Bulgaria *Corresponding Author E-mail: [email protected] Received: 15.08.2020 | Revised: 22.09.2020 | Accepted: 24.09.2020 ABSTRACT Neritina turrita (Gmelin 1791) along with other Neritina, Clithon, Septaria, and other fresh- water snails are popular animals in ornamental aquarium trade. The need for laboratory-bred animals, eliminating the potential biohazard risks, for the ornamental aquarium trade and the growing demand for animal model systems for biomedical research reasons the work for optimising a successful breading protocol. The initial results demonstrate N. turrita as tough animals, surviving fluctuations in pH from 5 to 9, and shifts from a fresh-water environment to brackish (2 - 20 ppt), to sea-water (35 ppt) salinities. The females laid over 630 (at salinities 0, 2, 10 ppt and temperatures of 25 - 28oC) white oval 1 by 0.5 mm egg capsules continuously within 2 months after collecting semen from several males. Depositions of egg capsules are set apart 6 +/-3 days, and consist on average of 53 (range 3 to 192) egg capsules. Production of viable veligers was recorded under laboratory conditions. Keywords: Neritina turrita, Sea-water, Temperatures, Environment INTRODUCTION supposably different genera forming hybrids Neritininae are found in the coastal swamps of with each other, suggesting their close relation.
    [Show full text]
  • Observations on the Shells of Some Fresh-Water Neritid Gastropods from Hawaii and Guam1
    Observations on the Shells of Some Fresh-Water Neritid Gastropods from Hawaii and Guam1 Geerat J. VERMEJJ Department of Biology, Yale University Abstract Observations on the fresh-water neritid prosobranch gastropods Neritina vespertina Sowerby 1849 and N. granosa Sowerby 1825 from Hawaii, and N. pul­ /igera conglobata von Martens 1879 and Septaria porce/lana (Linnaeus 1758) from Guam, have yielded a qualitative correlation between clinging ability of the animal and the degree of development of limpet-like shell characters. The hypothesis is put forth that the granular ornamentation on the shell of N. granosa, and possibly the presence of egg capsules on the shells of many fluviatile neritids (notably N. pu/ligera conglobata and S. porcellana) may create turbulence and minimize the effects of the strong current in which the animals live. Methods Shell dimensions were measured to the nearest tenth millimeter with Vernier calipers. Length was taken as the greatest distance from the apex to a point on the outer lip and usually coincides with the greatest linear dimension of the shell. Width is the greatest distance parallel to the outer edge of the parietal septum. Height is the greatest distance from a point on the dorsal surface to the plane of the opening of the shell measured perpendicular to the length and width dimensions. Attempts at quantitatively measuring the force by which the animal clings to the substratum and the resistance against shear were not successful, but the quali­ tative differences in these properties between the various species are striking. Names for the species discussed in this paper have been taken from Baker (1923), Kira (1962), and Rabe (1964), and have been confirmed and augmented by Drs.
    [Show full text]
  • Research Article ISSN 2336-9744 (Online) | ISSN 2337-0173 (Print) the Journal Is Available on Line At
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.ecol-mne.com http://zoobank.org/urn:lsid:zoobank.org:pub:C19F66F1-A0C5-44F3-AAF3-D644F876820B Description of a new subterranean nerite: Theodoxus gloeri n. sp. with some data on the freshwater gastropod fauna of Balıkdamı Wetland (Sakarya River, Turkey) DENIZ ANIL ODABAŞI1* & NAIME ARSLAN2 1 Çanakkale Onsekiz Mart University, Faculty Marine Science Technology, Marine and Inland Sciences Division, Çanakkale, Turkey. E-mail: [email protected] 2 Eskişehir Osman Gazi University, Science and Art Faculty, Biology Department, Eskişehir, Turkey. E-mail: [email protected] *Corresponding author Received 1 June 2015 │ Accepted 17 June 2015 │ Published online 20 June 2015. Abstract In the present study, conducted between 2001 and 2003, four taxa of aquatic gastropoda were identified from the Balıkdamı Wetland. All the species determined are new records for the study area, while one species Theodoxus gloeri sp. nov. is new to science. Neritidae is a representative family of an ancient group Archaeogastropoda, among Gastropoda. Theodoxus is a freshwater genus in the Neritidae, known for a dextral, rapidly grown shell ended with a large last whorl and a lunate calcareous operculum. Distribution of this genus includes Europe, also extending from North Africa to South Iran. In Turkey, 14 modern and fossil species and subspecies were mentioned so far. In this study, we aimed to uncover the gastropoda fauna of an important Wetland and describe a subterranean Theodoxus species, new to science. Key words: Gastropoda, Theodoxus gloeri sp. nov., Sakarya River, Balıkdamı Wetland Turkey.
    [Show full text]
  • Edge Effect on a Neritina Virginea (Neritimorpha, Neritinidae
    Edge effect on a Neritina virginea (Neritimorpha, Neritinidae) population in a black mangrove stand (Magnoliopsida, Avicenniaceae: Avicennia germinans) in the Southern Caribbean * VIVIANA AMORTEGUI-TORRES , ALEXANDER TABORDA-MARIN & JUAN F. BLANCO *University of Antioquia, Faculty of Natural Sciences, Institute of Biology. *Corresponding author: [email protected] Abstract. Mangroves in the Caribbean and particularly in the Urabá Gulf (Colombia) are strongly threatened by selective logging and conversion to pastures and croplands. Specifically, extensive Avicennia germinans- basin stands were converted to pastures during the twentieth century, thus exposing benthic fauna to an edge effect. We measured this effect on the population of a numerically dominant gastropod (Neritina virginea). Despite its resistance to natural disturbances, it is sensitive to extreme anthropogenic disturbances, and it would therefore be a good biological indicator of basin-mangrove conversion to pastures. Forest structure variables, soil texture, porewater properties and snail density and size were measured in quadrats placed in pastures, pasture-mangrove edges, and mangrove interiors. Snail abundance sharply decreased from the mangrove interior to the edge and then gradually towards the pastures. Individuals in the pasture were predominantly >10mm, and they frequently exhibited shell corrosion compared to individuals found in the interior. There were increases in soil temperature and pH (but oxygen) from interior to pasture consistent with canopy openness. The occurrence of the mangrove edges has led to a marked ecosystem-wide deterioration; however, N. virginea (abundance, size, shell corrosion) could be used as a reliable short to midterm indicator of microhabitat and microclimatic differences observed across mangrove-pasture edge. Key words: basin mangrove, pasture, gastropods, Urabá Gulf Resumen.
    [Show full text]
  • MOLECULAR PHYLOGENY of the NERITIDAE (GASTROPODA: NERITIMORPHA) BASED on the MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) and 16S Rrna
    ACTA BIOLÓGICA COLOMBIANA Artículo de investigación MOLECULAR PHYLOGENY OF THE NERITIDAE (GASTROPODA: NERITIMORPHA) BASED ON THE MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) AND 16S rRNA Filogenia molecular de la familia Neritidae (Gastropoda: Neritimorpha) con base en los genes mitocondriales citocromo oxidasa I (COI) y 16S rRNA JULIAN QUINTERO-GALVIS 1, Biólogo; LYDA RAQUEL CASTRO 1,2 , Ph. D. 1 Grupo de Investigación en Evolución, Sistemática y Ecología Molecular. INTROPIC. Universidad del Magdalena. Carrera 32# 22 - 08. Santa Marta, Colombia. [email protected]. 2 Programa Biología. Universidad del Magdalena. Laboratorio 2. Carrera 32 # 22 - 08. Sector San Pedro Alejandrino. Santa Marta, Colombia. Tel.: (57 5) 430 12 92, ext. 273. [email protected]. Corresponding author: [email protected]. Presentado el 15 de abril de 2013, aceptado el 18 de junio de 2013, correcciones el 26 de junio de 2013. ABSTRACT The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina , Septaria , Theodoxus , Puperita , and Clithon , while in the Bayesian analyses Theodoxus is separated from the other genera.
    [Show full text]
  • The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
    UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene.
    [Show full text]
  • Taxonomy, Conservation, and the Future of Native Aquatic Snails in the Hawaiian Islands
    diversity Perspective Taxonomy, Conservation, and the Future of Native Aquatic Snails in the Hawaiian Islands Carl C. Christensen 1,2, Kenneth A. Hayes 1,2,* and Norine W. Yeung 1,2 1 Bernice Pauahi Bishop Museum, Honolulu, HI 96817, USA; [email protected] (C.C.C.); [email protected] (N.W.Y.) 2 Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA * Correspondence: [email protected] Abstract: Freshwater systems are among the most threatened habitats in the world and the biodi- versity inhabiting them is disappearing quickly. The Hawaiian Archipelago has a small but highly endemic and threatened group of freshwater snails, with eight species in three families (Neritidae, Lymnaeidae, and Cochliopidae). Anthropogenically mediated habitat modifications (i.e., changes in land and water use) and invasive species (e.g., Euglandina spp., non-native sciomyzids) are among the biggest threats to freshwater snails in Hawaii. Currently, only three species are protected either federally (U.S. Endangered Species Act; Erinna newcombi) or by Hawaii State legislation (Neritona granosa, and Neripteron vespertinum). Here, we review the taxonomic and conservation status of Hawaii’s freshwater snails and describe historical and contemporary impacts to their habitats. We conclude by recommending some basic actions that are needed immediately to conserve these species. Without a full understanding of these species’ identities, distributions, habitat requirements, and threats, many will not survive the next decade, and we will have irretrievably lost more of the unique Citation: Christensen, C.C.; Hayes, books from the evolutionary library of life on Earth. K.A.; Yeung, N.W. Taxonomy, Conservation, and the Future of Keywords: Pacific Islands; Gastropoda; endemic; Lymnaeidae; Neritidae; Cochliopidae Native Aquatic Snails in the Hawaiian Islands.
    [Show full text]
  • Variación Fenotípica De La Concha En Neritinidae (Gastropoda: Neritimorpha) En Ríos De Puerto Rico
    Variación fenotípica de la concha en Neritinidae (Gastropoda: Neritimorpha) en ríos de Puerto Rico Juan Felipe Blanco1, Silvana Tamayo1 & Frederick N. Scatena2,3 1. Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 67 # 53-108, Medellín, Colombia. Apartado Aéreo 1226; [email protected]; [email protected] 2. Departamento de Ciencias de la Tierra y Ambientales, Universidad de Pensilvania, Filadelfia, Estados Unidos. 3. Fallecido Recibido 12-XII-2013. Corregido 20-I-2014. Aceptado 13-II-2014. Abstract: Phenotypic variability of the shell in Neritinidae (Gastropoda: Neritimorpha) in Puerto Rican rivers. Gastropods of the Neritinidae family exhibit an amphidromous life cycle and an impressive variability in shell coloration in Puerto Rican streams and rivers. Various nominal species have been described, but Neritina virginea [Linné 1758], N. punctulata [Lamarck 1816] and N. reclivata [Say 1822] are the only broadly reported. However, recent studies have shown that these three species are sympatric at the river scale and that species determination might be difficult due to the presence of intermediate color morphs. Individuals (8 751) were collected from ten rivers across Puerto Rico, and from various segments and habitats in Mameyes River (the most pristine island-wide) during three years (2000-2003), and they were assigned to one of seven phenotypes corresponding to nominal species and morphs (non-nominal species). The “axial lines and dots” morph cor- responding to N. reclivata was the most frequent island-wide, while the patelliform N. punctulata was scant, but the only found in headwater reaches. The “yellowish large tongues” phenotype, typical of N.
    [Show full text]
  • Thành Phần Loài Động Vật Đáy Ở Vịnh Xuân Đài, Tỉnh Phú Yên
    Tạp chí Khoa học Đại học Huế: Khoa họ c Tự nhiên; ISSN 1859–1388 Tập 127, Số 1B, 2018, Tr. 59–72; DOI: 10.26459/hueuni-jns.v127i1B.4837 THÀNH PHẦN LOÀI ĐỘNG VẬT ĐÁY Ở VỊNH XUÂN ĐÀI, TỈNH PHÚ YÊN Hoàng Đình Trung* Trường Đại học Khoa học, Đại học Huế, 77 Nguyễn Huệ, Huế, Việt nam Tóm tắt: Bài báo công bố kết quả điều tra tổng hợp về thành phần loài động đáy ở vịnh Xuân Đài thuộc thị xã Sông Cầu, tỉnh Phú Yên trong hai năm 2017–2018. Cho đến nay đã xác định được 144 loài động vật đáy (Zoobenthos) thuộc 92 giống, 52 họ, 22 bộ của 4 ngành: Da gai (Echinodermata), Giun đốt (Annelida), Thân mềm (Mollusca) và Chân khớp (Arthropoda). Trong đó, Ngành Da gai (Echinodermata) có 19 loài thuộc 6 bộ, 12 họ, 14 giống. Ngành Giun đốt (Annelida) gồm 2 bộ, 4 họ, 8 giống và 11 loài. Ngành Thân mềm gồm lớp Chân bụng (Gastropoda) có 36 loài thuộc 6 bộ, 14 họ và 20 giống; lớp Hai mảnh vỏ (Bivalvia) có 37 loài thuộc 6 bộ, 11 họ, 24 giống. Ngành Chân khớp (Arthropoda) chỉ có lớp giáp xác (Crustacea) gồm 2 bộ, 11 họ, 26 giống và 41 loài. Nghiên cứu đã bổ sung mới cho khu hệ Động vật đáy vịnh Xuân Đài 31 họ, 95 loài, 56 giống nằm trong 7 lớp (Sao biển, Hải sâm, Cầu gai, Giun nhiều tơ, Chân bụng, Hai mảnh vỏ, Giáp xác). Từ khóa: Động vật đáy, vịnh Xuân Đài, tỉnh Phú Yên 1 Đặt vấn đề Phú Yên là tỉnh ven biển Nam Trung Bộ với chiều dài bờ biển 189 km, có nhiều dãy núi ăn nhô ra biển hình thành các eo vịnh, đầm kín, thuận lợi cho phát triển nuôi trồng thủy sản.
    [Show full text]