Chromosome Studies on Papaveraceae with Special Reference to the Phylogeny* by T

Total Page:16

File Type:pdf, Size:1020Kb

Chromosome Studies on Papaveraceae with Special Reference to the Phylogeny* by T 558 Cvtolcgia 10 Chromosome Studies on Papaveraceae with Special Reference to the Phylogeny* By T. Sugiura Osaka Higher School, Osaka Received April 19, 1939 Although there are about 600 species of Papaveraceae, there have been chromosome studies made of comparatively few of them, in spite of the majority of them being cultivated in the gardens. It is hoped therefore that it will be of some interest to describe some of the chromosome studies of Papaveraceae which the writer has carried on during the last few years, especially with a view to find the phylogenic relationships between various genera of this family. The first karyological studies of the Papaveraceae were made by Nemec (1910) on Corydalis pumila and later by Tahara on Pa.parer rhoeas, orienta,le and somniferum. Afterwards Ljungdahl (1922-'24), Yasui (1921-'39) on Papaver, Winge (1925) on Eschscholtzia, Kachidze (1926) on Platystemon were the chief ones on karyological studies in Papaveraceae. Here the writer wishes to express his best thanks to the directors of the botanical gardens at Berlin-Dahlem, Graz, Kaunas, Kew, Leyden, Oslo, Paris and Warsaw for the seeds that were kindly sent to him for the present study. Material and Method Only young flower buds were collected for study. The Farmer's aceto-alcohol was used for fixation and Heidenhain's iron-alum haematoxylin for staining in order to be able to compare the present preparations with the former ones, upon which my previous descriptions on chromosomes of higher plants are based. Plants Investigated') Hypecoideae According to Fedde (1936) there are two genera Pteridophyllum and Hypecoum. This work was made possible by a grant from the Japan Society for the Advancement of Cytology, to which society the writer's most appreciative thanks are due. 1) The classification in this family is based chiefly on F. Fedde's "Papa veraceae" in "Pflanzenfamilien", 2nd Ed. 1936. 1940 Chromosome studies on Papaveraceae with special reference etc . 559 Pteridophyllum racemosum (Fig. 1). It is only grown wild in our country. The outer and inner morphological characters in this plant are quite different from those of the latter genus. Murbeck (1912), therefore, has established a new subfamily Pteridophylloideae, and Hayata (1930) also adopted a new family Pteridophyllaceae for the reason that they had simpler stele and different floral structure from those of other Papaveraceae. Prof. Nakai of the Tokyo Imperial University holds the same opinion. Karyological results lead to the same conclusion. Its meiotic number 9. which is almost never found (except in Roemeria) in this family, must be derived from 3, the basic number of Papaver oideae (the writer's Cheridonioideae, cf, p. 574, phylogenic scheme) and trebled. Murbeck said "Pteridophyllum ist auf Grund seiner isolierten Stellung unzweifelhaft ein uralter Typus, und da diese Gattung, obgleich sowohl von den Papaveroideae wie von den Hypecoideae scharf geschieden, doch eine Mittelstellung zwischen ihnen einnimmt, so konnte man sich zu der Annahme versucht fuhlen, daB sick diese beiden Gruppen von dem Pteridophyllum Typus abgezweigt hatten. Wahrscheinlicher ist es jedoch, daB sich die drei Unterfamilien entweder gleichzeitig aus einander sehr nahestehenden Formen entwickelt haben, oder daB die Pteridophyl loideae durch ausgestorbene Gattungen einst naher mit den Papa veroideae verbunden gewesen sind und also eine fruhzeitige Auszwei. gung von diesen darstellen". According to Fedde's description no seeds are seen in this plant. It may be so, as polyspory is observable in it. The Pteridophyllum, being different from other papaveraceous plants not only in outer appearances but also as regards inner anatomical and karyological structure, as stated above, should be established as an independent family Pteridophyllaceae. It is pro bable that Pteridophyllum, having 9 meiotic chromosomes, branched out from very remote ancestors of Papaveroideae (the writer's Cheridonioideae, cf. p. 574, phylogenic scheme) with the basic chromosome number 3, and has now grown quite stable by poly ploidation. Hypeco irn procumbens (Fig. 2). This plant, being different from the previous one both as regards its outer and inner mor phological structure, has 8 meiotic chromosomes. Smith (1934) counted, however, 12 somatic chromosomes. In spite of the size of the meiotic chromosomes being rather larger than those of Pterido phyllum, as stated above, the pollen mother cells are far smaller 560 T. SUGIURA Cytologia 10 than that, the former 7.5ƒÊ in diam. and the latter about 14ƒÊ t in diam. The basic number in this genus is 4. From thee basic number 4 in this genus and 3 in the above mentioned species, it is considered that they have been developed face to face in each other as shown in the phylogenic scheme (cf. p. 574). Papaveroideae Platystemoneae Platystemon californicus (Fig. 3). There has been still no report about the chromosome numbers in this genus. Kachidze (1926) communicated to S. Nawashin that it had 6 meiotic chromo somes. The writer has counted 6 also. The pollen mother cells and meiotic chromosomes are larger than those of Hypecoum procumbens. We agree with Dickson's opinion that the present genus is the most primitive one in the Papaveroideae (the writer's Chelidonioideae, cf. p. 574, phylogenic scheme). Hunnemannia funiaria,efolia. (Fig. 4) The genus Hunner,w' nia has only one species which is half xerophytic. It was originally grown wild in Mexico. The writer counted 28 meiotic chromosomes in 1931. The same number was also counted by Smith (1934). The first metaphase chromosomes, being ellipsoidal, are rather small in comparison with those of other Papaveroideae (the writer's Chelidonioideae and Papaveroideae), while the pollen mother cells are very large, about 25ƒÊ in diam. From the results of my karyo logical observation in Papaveraceae it can be said that these pollen mother cells are the largest of the papaveraceous group. The basic number in this genus may be 7. Probably this plant arose as an effect of crossing between some species like Corydalis or Dicentra (Corydaloideae cf. 574 phylogenic scheme) and some Eschscholtzia (Chelidonioideae cf. p. 574 phylogenic scheme) in very early times. The above suggestion seems to be substantiated because the geographical distribution of above 3 species is almost the same. Eschscholtzia pulchella. (Fig. 5) Formerly Winge (1925) found the meiotic chromosome number in four different species to be 6. Morinaga and alli (1929) and Lawrence (1930) have confirmed that there were 6 meiotic chromosomes in E. californica. Smith (1934) has also counted 6 meiotic chromosomes in E. caespitosa and E. californica. But only Lawrence (1930) has counted eight meiotic chromosomes in E. mollis. The writer has also found 6 meiotic chromosomes in E. pulchella. The pollen mother cells are 9ƒÊ in diam. Thus, generally the basic number of chro mosomes in this genus is 3. The chromosome numbers found up to date are as follows: 1940 Chromosome studies on Papaveraceae with special reference etc. 561 J. Dickson believed that Eschscoltzia was the most highly developed type of Papaveroideae (the writer's Cheridonioideae and Papaveroideae, cf. p. 574 phylogenic scheme) from his studies on the gynaecium of the Papaveroideae, but we can not agree with this from the karyological point of view. Chelidonieae Hylomecon japonica. (Fig. 6) This plant is a unique species which is only grown in temparate East Asia. The pollen mother cells are about 8.5ƒÊ in diam.. Six spherical meiotic chromosomes are found. Dicranostigma Franchetianum. (Fig. 7) It is grown in Sze. Chuan and Yiinnan and has 6 meiotic chromosomes like Chelidonium. The size of the chromosomes is equal to that of Chelidonium majus. M. E. Smith (1934), however, counted 16 somatic chromosomes, which seem to be doubtful. Chelidonium majus. Chelidonium has only one species and some varieties. Since this has already been discussed in a previous paper, only certain interesting karyological figures are described-here. In the first metaphase it is often observed that there is a circular arrangement of chromosomes consisting of 6 at one pole and a 5-1 arrangement at the other. This suggests that the char acters of both daughter nuclei are different. C. majus var. laciniata (Figs. 8 a, 8 b) which was studied anew, has also 6 chromosomes, which are as large as those of C. majus. It is observed that although chromosomes are filar at the second anaphase, they are spherical at the first meta and anaphase. Similar figures are also found in C. majus. Probably this phenomenon may be due to the smaller viscosity of chromosomes at the second anaphase. Von Boenicke (1911) counted 8 meiotic chromosomes in C. majus and C, laciniatum, but to the writer it seems to be a miscount, Winge (1917) and Marchal (1920) also counted 6. 562 T. SUGIURA Cytologia 10 Macleaya In this genus there are only two following species which are grown in Central Asia and temparate East Asia. Eu-Macleaya ................. M. cordata n=10 (Fig. 9) Pseudo-Bocconia ............. M. microcarpa n=10 (Fig. 10) Bocconia In this genus there are 9 species which are grown in Central and South America. I have studied one species, B. frutescens (Fig. 11). Apart from systematic knowledge these three plants are very interesting karyologically. These 3 plants have the same number of meiotic chromosomes of almost the same shape and size of pollen mother cells in spite of the fact that they are grown in different localities of the world. Not only is their meiotic chromo some number 10 quite isolated from those of the, neighbouring genera Chelidonium, Hylomecon etc. which have 6, but also their pollen mother cells are smaller than those of other genera in Chelidoniae. The chromosome number 10 has hitherto not been found in other genera in the Papaveraceae. Thus it is considered from the karyological point of view that Macleaya and Bocconia both branched out from the Chelidonium.
Recommended publications
  • Phylogeography of a Tertiary Relict Plant, Meconopsis Cambrica (Papaveraceae), Implies the Existence of Northern Refugia for a Temperate Herb
    Article (refereed) - postprint Valtueña, Francisco J.; Preston, Chris D.; Kadereit, Joachim W. 2012 Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21 (6). 1423-1437. 10.1111/j.1365- 294X.2012.05473.x Copyright © 2012 Blackwell Publishing Ltd. This version available http://nora.nerc.ac.uk/17105/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Phylogeography of a Tertiary relict plant, Meconopsis cambrica 2 (Papaveraceae), implies the existence of northern refugia for a 3 temperate herb 4 Francisco J. Valtueña*†, Chris D. Preston‡ and Joachim W. Kadereit† 5 *Área de Botánica, Facultad deCiencias, Universidad de Extremadura, Avda. de Elvas, s.n.
    [Show full text]
  • Argemone Mexicana L.)
    Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.11 No.1, Issue of January 15, 2008 © 2008 by Pontificia Universidad Católica de Valparaíso -- Chile Received March 21, 2007 / Accepted Mayo 20, 2007 DOI: 10.2225/vol11-issue1-fulltext-3 SHORT COMMUNICATION Agrobacterium-mediated transient transformation of Mexican prickly poppy (Argemone mexicana L.) Gregorio Godoy-Hernández* Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Elidé Avilés-Berzunza Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Mildred Carrillo-Pech Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Felipe Vázquez-Flota Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Website: http://www.cicy.mx Financial support: Consejo Nacional de Ciencia y Tecnología (CONACYT) from México (Grant No. 28643-B). Keywords: Argemone mexicana, β-glucuronidase, benzylisoquinoline alkaloids, genetic transformation, neomycin phosphotransferase II.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
    In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • The Developmental and Genetic Bases of Apetaly in Bocconia Frutescens
    Arango‑Ocampo et al. EvoDevo (2016) 7:16 DOI 10.1186/s13227-016-0054-6 EvoDevo RESEARCH Open Access The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae) Cristina Arango‑Ocampo1, Favio González2, Juan Fernando Alzate3 and Natalia Pabón‑Mora1* Abstract Background: Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; how‑ ever, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results: We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci- specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes inB. frute- scens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions: Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans.
    [Show full text]
  • Isolation and Identification of Alkaloids from Macleaya Microcarpa by UHPLC–Q-TOF-MS and Their Cytotoxic Activity in Vitro, An
    Sai et al. BMC Chemistry (2020) 14:5 https://doi.org/10.1186/s13065-020-0660-1 BMC Chemistry RESEARCH ARTICLE Open Access Isolation and identifcation of alkaloids from Macleaya microcarpa by UHPLC– Q-TOF-MS and their cytotoxic activity in vitro, antiangiogenic activity in vivo Chunmei Sai1,2, Jian’an Wang1, Binjie Li3, Lin Ding1, Huiyun Wang1, Qibao Wang1, Huiming Hua3, Fangpeng Zhang2 and Qiang Ren1* Abstract Background: Extensive bioactivities of alkaloids from the genus Macleaya (Macleaya cordata (Willd.) R. Br. and Macleaya microcarpa (Maxim.) Fedde) have been widely reported, as well as more and more concerned from the sci- entifc communities. However, systematic research on the phytochemical information of M. microcarpa is incomplete. The aim of this study was to rapidly and conveniently qualitative analyze alkaloids from M. microcarpa by ultra-perfor- mance liquid chromatography/quadrupole-time-of-fght mass spectrometry (UHPLC–Q-TOF-MS) using accurate mass weight and characteristic fragment ions, furthermore separate and identify the main alkaloids, test antitumor activity in vitro and antiangiogenic activity in vivo. Results: A total of 14 alkaloids from fruits of M. microcarpa were identifed by UHPLC–Q-TOF-MS, including 5 pro- topines, 2 benzophenanthridines, 1 dimer, 1 dihydrobenzophenanthridines and 5 unknown structure compounds. Two major alkaloids were isolated by various column chromatographic methods. Their structures were determined by NMR data and related literatures. The two major alkaloids were evaluated for intro cytotoxic activities against HL-60, MCF-7, A-549, and in vivo antiangiogenic activity using transgenic zebrafsh. Conclusions: Current qualitative method based on UHPLC–Q-TOF-MS technique provided a scientifc basis for isola- tion, structural identifcation, and in vitro or in vivo pharmacological further study of alkaloids from M.
    [Show full text]
  • Index Seminum Et Sporarum Quae Hortus Botanicus Universitatis Biarmiensis Pro Mutua Commutatione Offert
    INDEX SEMINUM ET SPORARUM QUAE HORTUS BOTANICUS UNIVERSITATIS BIARMIENSIS PRO MUTUA COMMUTATIONE OFFERT Salix recurvigemmata A.K. Skvortsov f. variegata Schumikh., O.E. Epanch. & I.V. Belyaeva Biarmiae 2020 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ СПИСОК СЕМЯН И СПОР, ПРЕДЛАГАЕМЫХ ДЛЯ ОБМЕНА БОТАНИЧЕСКИМ САДОМ ИМЕНИ А.Г. ГЕНКЕЛЯ ПЕРМСКОГО ГОСУДАРСТВЕННОГО НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО УНИВЕРСИТЕТА Syringa vulgaris L. ‘Красавица Москвы’ Пермь 2020 Index Seminum 2020 2 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ Дорогие коллеги! Ботанический сад Пермского государственного национального исследовательского университета был создан в 1922 г. по инициативе и под руководством проф. А.Г. Генкеля. Здесь работали известные ученые – ботаники Д.А. Сабинин, В.И. Баранов, Е.А. Павский, внесшие своими исследованиями большой вклад в развитие биологических наук на Урале. В настоящее время Ботанический сад имени А.Г. Генкеля входит в состав регионального Совета ботанических садов Урала и Поволжья, Совет ботанических садов России, имеет статус научного учреждения и особо охраняемой природной территории. Основными научными направлениями работы являются: интродукция и акклиматизация растений,
    [Show full text]
  • Argemone Mexicana
    Argemone mexicana General description Scientific Name with Author Argemone mexicana L. Synonyms Argemone leiocarpa Greene; Argemone ochroleuca Sweet; Echtrus trivialis Lour.; Echtrus mexicanus (L.) Nieuwl.; Argemone vulgaris Spach; Argemone versicolor Salisb.; Argemone spinosa Moench; Argemone sexvalis Stokes; Argemone mucronata Dum. Cours. ex Steud.; Argemone mexicana var. typica Prain; Argemone mexicana var. parviflora Kuntze; Argemone mexicana var. ochroleuca (Sweet) Lindl.; Argemone mexicana var. lutea Kuntze; Argemone mexicana fo. leiocarpa (Greene) G.B. Ownbey (Pires, 2009). Family Papaveraceae Vernacular Names Mexican poppy, prickly poppy, yellow thistle, Mexican thistle (En). Argémone, pavot épineux, pavot du Mexique, tache de l’œil, chardon du pays (Fr) (Bosch, 2008) Botanical Description Argemone mexicana is an annual herb, growing up to 150 cm with a slightly branched tap root. Its stem is branched and usually extremely prickly. It exudes a yellow juice when cut. It has showy yellow flowers. Leaves are thistle-like and alternate, without leaf stalks (petioles), toothed (serrate) and the margins are spiny. The grey-white veins stand out against the bluish-green upper leaf surface. The stem is oblong in cross-section. Flowers are at the tips of the branches (are terminal) and solitary, yellow and of 2.5-5 cm diameter. Fruit is a prickly oblong or egg-shaped (ovoid) capsule. Seeds are very numerous, nearly spherical, covered in a fine network of veins, brownish black and about 1 m m in diameter (Nacoulma, 1996; Bosch, 2008). 1 MEAMP – Appear Project – 75 September 2012 – August 2014 Photo LABIOCA 1. Argemone mexicana Origin and Distribution Argemone mexicana is native in Mexico and the West Indies, but has become pantropical after accidental introduction or introduction as an ornamental.
    [Show full text]
  • The Alien Vascular Flora of Tuscany (Italy)
    Quad. Mus. St. Nat. Livorno, 26: 43-78 (2015-2016) 43 The alien vascular fora of Tuscany (Italy): update and analysis VaLerio LaZZeri1 SUMMARY. Here it is provided the updated checklist of the alien vascular fora of Tuscany. Together with those taxa that are considered alien to the Tuscan vascular fora amounting to 510 units, also locally alien taxa and doubtfully aliens are reported in three additional checklists. The analysis of invasiveness shows that 241 taxa are casual, 219 naturalized and 50 invasive. Moreover, 13 taxa are new for the vascular fora of Tuscany, of which one is also new for the Euromediterranean area and two are new for the Mediterranean basin. Keywords: Vascular plants, Xenophytes, New records, Invasive species, Mediterranean. RIASSUNTO. Si fornisce la checklist aggiornata della fora vascolare aliena della regione Toscana. Insieme alla lista dei taxa che si considerano alieni per la Toscana che ammontano a 510 unità, si segnalano in tre ulteriori liste anche i taxa che si ritengono essere presenti nell’area di studio anche con popolazioni non autoctone o per i quali sussistono dubbi sull’effettiva autoctonicità. L’analisi dello status di invasività mostra che 241 taxa sono casuali, 219 naturalizzati e 50 invasivi. Inoltre, 13 taxa rappresentano una novità per la fora vascolare di Toscana, dei quali uno è nuovo anche per l’area Euromediterranea e altri due sono nuovi per il bacino del Mediterraneo. Parole chiave: Piante vascolari, Xenofte, Nuovi ritrovamenti, Specie invasive, Mediterraneo. Introduction establishment of long-lasting economic exchan- ges between close or distant countries. As a result The Mediterranean basin is considered as one of this context, non-native plant species have of the world most biodiverse areas, especially become an important component of the various as far as its vascular fora is concerned.
    [Show full text]
  • Fremontia Journal of the California Native Plant Society
    $10.00 (Free to Members) VOL. 40, NO. 3 AND VOL. 41, NO. 1 • SEPTEMBER 2012 AND JANUARY 2013 FREMONTIA JOURNAL OF THE CALIFORNIA NATIVE PLANT SOCIETY INSPIRATIONINSPIRATION ANDAND ADVICEADVICE FOR GARDENING VOL. 40, NO. 3 AND VOL. 41, NO. 1, SEPTEMBER 2012 AND JANUARY 2013 FREMONTIA WITH NATIVE PLANTS CALIFORNIA NATIVE PLANT SOCIETY CNPS, 2707 K Street, Suite 1; Sacramento, CA 95816-5130 FREMONTIA Phone: (916) 447-CNPS (2677) Fax: (916) 447-2727 Web site: www.cnps.org Email: [email protected] VOL. 40, NO. 3, SEPTEMBER 2012 AND VOL. 41, NO. 1, JANUARY 2013 MEMBERSHIP Membership form located on inside back cover; Copyright © 2013 dues include subscriptions to Fremontia and the CNPS Bulletin California Native Plant Society Mariposa Lily . $1,500 Family or Group . $75 Bob Hass, Editor Benefactor . $600 International or Library . $75 Rob Moore, Contributing Editor Patron . $300 Individual . $45 Plant Lover . $100 Student/Retired/Limited Income . $25 Beth Hansen-Winter, Designer Cynthia Powell, Cynthia Roye, and CORPORATE/ORGANIZATIONAL Mary Ann Showers, Proofreaders 10+ Employees . $2,500 4-6 Employees . $500 7-10 Employees . $1,000 1-3 Employees . $150 CALIFORNIA NATIVE STAFF – SACRAMENTO CHAPTER COUNCIL PLANT SOCIETY Executive Director: Dan Gluesenkamp David Magney (Chair); Larry Levine Finance and Administration (Vice Chair); Marty Foltyn (Secretary) Dedicated to the Preservation of Manager: Cari Porter Alta Peak (Tulare): Joan Stewart the California Native Flora Membership and Development Bristlecone (Inyo-Mono): Coordinator: Stacey Flowerdew The California Native Plant Society Steve McLaughlin Conservation Program Director: Channel Islands: David Magney (CNPS) is a statewide nonprofit organi- Greg Suba zation dedicated to increasing the Rare Plant Botanist: Aaron Sims Dorothy King Young (Mendocino/ understanding and appreciation of Vegetation Program Director: Sonoma Coast): Nancy Morin California’s native plants, and to pre- Julie Evens East Bay: Bill Hunt serving them and their natural habitats Vegetation Ecologists: El Dorado: Sue Britting for future generations.
    [Show full text]
  • Fumaria Parviflora Lam. (Fumitory): a Traditional Herbal Medicine with Modern Evidence
    Asian Journal of Pharmacy and Pharmacology 2017; 3(6): 200-207 200 Review Article Fumaria parviflora Lam. (Fumitory): A traditional herbal medicine with modern evidence Suresh Kumar* 1, 2, Anil Kumar Sharma 3 , Anjoo Kamboj 4 1Lord Shiva College of Pharmacy Sirsa, Haryana, India-125055 2Research Scholar, Department of Pharmacy, IK Gujral Punjab Technical University, Jalandhar, Punjab, India-144001 3Formerly Director and Principal in CT Institute of Pharmaceutical Sciences, Jalandhar, Punjab, India-144020 4Chandigarh College of Pharmacy, Landran, Mohali, Punjab, India-140110 Received: 2 November 2017 Revised: 4 December 2017 Accepted: 5 December 2017 Abstract Fumaria parviflora is an important medicinal herb which is used in various traditional medicines to cure many diseases. The herbal extracts have been reported to possess anti-inflammatory, antispasmodic, antidiarrheal, bronchodilator, hypoglycemic, anthelmintic, laxative, antiprotozoal, dermatological diseases, enhance male fertility and antinociceptive effect. Their biological activity is primarily associated with the presence of alkaloids such as protopine, cryptopine, parfumine, berberine, oxyberberine, fumarine, protocatechuic acid and caffeic acid. Some other bioactive are fatty acids, volatile oils and sesquterpenoids and aromatic hydrocarbons in plant. The present review is therefore, an effort to give a detailed survey of the literature on its botany, phytochemistry and biological activities of Fumaria parviflora, chronologically. Keywords: Fumaria parviflora, Protopine, fumitory,
    [Show full text]
  • Paisia, an Early Cretaceous Eudicot Angiosperm Flower With
    Grana, 2018 Vol. 57, Nos. 1–2, 1–15, https://doi.org/10.1080/00173134.2017.1310292 Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal ELSE MARIE FRIIS 1, MÁRIO MIGUEL MENDES 2,3 & KAJ RAUNSGAARD PEDERSEN 4 1Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden, 2Centre for Interdisciplinary Development and Research on Environment, Applied Management and Space, Lusófona University of Humanities and Technologies, Lisboa, Portugal, 3Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, Faro, Portugal, 4Department of Geosciences, University of Aarhus, Aarhus, Denmark Abstract A new fossil angiosperm, Paisia pantoporata, is described from the Early Cretaceous Catefica mesofossil flora, Portugal, based on coalified floral buds, flowers and isolated floral structures. The flowers are actinomorphic and structurally bisexual with a single whorl of five fleshy tepals, a single whorl of five stamens and a single whorl of five carpels. Tepals, stamens and carpels are opposite, arranged on the same radii and tepals are involute at the base clasping the stamens. Stamens have a massive filament that grades without a joint into the anther. The anthers are dithecate and tetraspor- angiate with extensive connective tissue between the tiny pollen sacs. Pollen grains are pantoporate and spiny. The carpels are free, apparently plicate, with many ovules borne in two rows along the ventral margins. Paisia pantoporata is the oldest known flower with pantoporate pollen. Similar pantoporate pollen was also recognised in the associated dispersed palynoflora. Paisia is interpreted as a possibly insect pollinated, herbaceous plant with low pollen production and low dispersal potential of the pollen.
    [Show full text]
  • 44 * Papaveraceae 1
    44 * PAPAVERACEAE 1 Dennis I Morris 2 Annual or perennial herbs, rarely shrubs, with latex generally present in tubes or sacs throughout the plants. Leaves alternate, exstipulate, entire or more often deeply lobed. Flowers often showy, solitary at the ends of the main and lateral branches, bisexual, actinomorphic, receptacle hypogynous or perigynous. Sepals 2–3(4), free or joined, caducous. Petals (0–)4–6(–12), free, imbricate and often crumpled in the bud. Stamens usually numerous, whorled. Carpels 2-many, joined, usually unilocular, with parietal placentae which project towards the centre and sometimes divide the ovary into several chambers, ovules numerous. Fruit usually a capsule opening by valves or pores. Seeds small with crested or small raphe or with aril, with endosperm. A family of about 25 genera and 200 species; cosmopolitan with the majority of species found in the temperate and subtropical regions of the northern hemisphere. 6 genera and 15 species naturalized in Australia; 4 genera and 9 species in Tasmania. Papaveraceae are placed in the Ranunculales. Fumariaceae (mostly temperate N Hemisphere, S Africa) and Pteridophyllaceae (Japan) are included in Papaveraceae by some authors: here they are retained as separate families (see Walsh & Norton 2007; Stevens 2007; & references cited therein). Synonymy: Eschscholziaceae. Key reference: Kiger (2007). External resources: accepted names with synonymy & distribution in Australia (APC); author & publication abbre- viations (IPNI); mapping (AVH, NVA); nomenclature (APNI, IPNI). 1. Fruit a globular or oblong capsule opening by pores just below the stigmas 2 1: Fruit a linear capsule opening lengthwise by valves 3 2. Stigmas joined to form a disk at the top of the ovary; style absent 1 Papaver 2: Stigmas on spreading branches borne on a short style 2 Argemone 3.
    [Show full text]