Isolation and Identification of Alkaloids from Macleaya Microcarpa by UHPLC–Q-TOF-MS and Their Cytotoxic Activity in Vitro, An

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Identification of Alkaloids from Macleaya Microcarpa by UHPLC–Q-TOF-MS and Their Cytotoxic Activity in Vitro, An Sai et al. BMC Chemistry (2020) 14:5 https://doi.org/10.1186/s13065-020-0660-1 BMC Chemistry RESEARCH ARTICLE Open Access Isolation and identifcation of alkaloids from Macleaya microcarpa by UHPLC– Q-TOF-MS and their cytotoxic activity in vitro, antiangiogenic activity in vivo Chunmei Sai1,2, Jian’an Wang1, Binjie Li3, Lin Ding1, Huiyun Wang1, Qibao Wang1, Huiming Hua3, Fangpeng Zhang2 and Qiang Ren1* Abstract Background: Extensive bioactivities of alkaloids from the genus Macleaya (Macleaya cordata (Willd.) R. Br. and Macleaya microcarpa (Maxim.) Fedde) have been widely reported, as well as more and more concerned from the sci- entifc communities. However, systematic research on the phytochemical information of M. microcarpa is incomplete. The aim of this study was to rapidly and conveniently qualitative analyze alkaloids from M. microcarpa by ultra-perfor- mance liquid chromatography/quadrupole-time-of-fght mass spectrometry (UHPLC–Q-TOF-MS) using accurate mass weight and characteristic fragment ions, furthermore separate and identify the main alkaloids, test antitumor activity in vitro and antiangiogenic activity in vivo. Results: A total of 14 alkaloids from fruits of M. microcarpa were identifed by UHPLC–Q-TOF-MS, including 5 pro- topines, 2 benzophenanthridines, 1 dimer, 1 dihydrobenzophenanthridines and 5 unknown structure compounds. Two major alkaloids were isolated by various column chromatographic methods. Their structures were determined by NMR data and related literatures. The two major alkaloids were evaluated for intro cytotoxic activities against HL-60, MCF-7, A-549, and in vivo antiangiogenic activity using transgenic zebrafsh. Conclusions: Current qualitative method based on UHPLC–Q-TOF-MS technique provided a scientifc basis for isola- tion, structural identifcation, and in vitro or in vivo pharmacological further study of alkaloids from M. microcarpa in the future. Keywords: Macleaya microcarpa, Alkaloids, Isolation and identifcation, UHPLC–Q-TOF-MS, Biological activity Introduction very extensive application value and great exploitation Te genus Macleaya contains two species, Macleaya cor- foreground as well as pesticide, veterinary drug, medici- data (Willd.) R. Br. and Macleaya microcarpa (Maxim.) nal ones in North America, Europe, China, which are Fedde, which mainly distributed in Japan, South and directly associated with the multifarious alkaloids and Northwest China, on slopes of grass or thickets at alti- their signifcant biological activities. A variety of alka- tudes of 450–1600 m [1]. Tey are well-known for their loids from M. cordata, such as sanguinarine, cheler- ythrine, protopine, allocryptopine, and others, exhibit *Correspondence: [email protected] anti-microbial, anti-infammatory, insecticidal, analgesic, 1 College of Pharmacy, Jining Medical University, Rizhao 276826, anticancer activity, have irreplaceable pharmacological Shandong, China Full list of author information is available at the end of the article © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea- tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo- main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Sai et al. BMC Chemistry (2020) 14:5 Page 2 of 11 efects [2–4]. However, systematic researches on the phy- (n-BuOH), to aford PE, CH2Cl2, n-BuOH and aqueous tochemical composition of M. microcarpa are few. extracts (For further separation and purifcation). UHPLC–Q-TOF-MS is widely used in qualitative com- Te crude ethanol extracts (200 mg) was dissolved with positions. Te method can provide high resolution and 5 mL methanol by sonication at 200 W for 15 min. Te accuracy data, as well as abundant structural informa- solution was fltered with a 0.22 µm and then analyzed by tion such as high-resolution second-stage mass fragment UHPLC–Q-TOF-MS. ions [5, 6]. Tis study aimed to rapidly and conveniently characterize alkaloids from M. microcarpa by UHPLC– UPLC–Q‑TOF‑MS analysis Q-TOF-MS using accurate mass weight and characteris- Agilent 1290 series Rapid Resolution LC system was tic fragment ions, furthermore separate and identify the coupled with Agilent 6530 Accurate-Mass quadru- main alkaloids by chromatographic and spectral tech- pole time of fight (Q-TOF) mass spectrometer (Agilent niques, test antitumor activity in vitro using the trypan Technologies, CA, USA) equipped with an electrospray blue method and MTT method reported previously ionization (ESI) interface. Te chromatographic separa- [7], and antiangiogenic activity in vivo using transgenic tion of analyzed crude ethanol extracts was performed zebrafsh [8]. on TOSOH TSK gel ODS-100V (4.6 × 150 mm, 3.0 µm) column (Tosoh Bioscience, Japan). Te column tempera- Materials and methods ture was maintained at 35 °C. Te injection volume was Plant materials 5 μL. Te mobile phase consisted of 0.05% formic acid Te fruits of Macleaya microcarpa (Maxim.) Fedde were (v/v) (A) and acetonitrile (ACN) (B). Te gradient pro- collected from Xiaguan Town, Neixiang County, Nan- gram was applied as follows: 0–5 min at 30% B; 5–20 min yang, Henan Province, China, in September 2017. (Notes: at 30–54% B; 20–23 min at 54–70% B; 23–40 min at It was not a protective plant and was allowed to be col- 70–80% B; 40–50 min at 80–90% B; 50–52 min at 90–30% lected). It was identifed by Prof. Jian’an Wang (College of B; 52–60 min at 30% B. Te fow rate was adjusted to Pharmacy, Jining Medical University, Shandong, China). 1.0 mL/min. Te outlet of UHPLC was split (1:4) and Te voucher sample (XGBLH-20170918) was deposited introduced into the ESI source. in pharmaceutical experimental center, College of Phar- Te MS conditions were set as follows: drying gas at macy, Jining Medical University, Rizhao, China. a fow rate of 10 L/min; drying gas temperature, 350 °C; pressure of nebulizer gas pressure, 45 psig; capillary volt- age ( ) 3000 V positive and negative ion modes and the Chemicals and reagents ± mass range from m/z 100 to 1200 Da. Te MS/MS spec- Chromatographic grade acetonitrile was purchased from tra were acquired with auto MS/MS mode at the acquisi- Honeywell, Burdick & Jackson. LC/MS-grade acetonitrile tion rate of 2 spectra/s. was purchased from Mallinckrodt Baker, Inc. (Phillips- Te calculation of the elemental composition was burg, NJ, USA). Chromatographic grade formic acid was acquired with Mass Hunter Workstation Software (Qual- purchased from TEDIA, Inc (Fairfeld, USA). Deionized itative Analysis Version B.06.00) (Agilent Technologies, water was purifed by Millipore purifcation system (Mil- CA, USA). lipore, MA, USA). Column chromatography (CC) was performed with silica gel (100–200 and 200–300 mesh, Isolation of two major alkaloids Shanghai Taitan Chemical Co. Ltd., Shanghai, China) and Te dichloromethane extract (365 g) was fractioned mci gel CHP20/P120 (Mitsubishi chemical corporation, using silica gel column chromatography (CC) and eluted Japan) and Sephadex LH-20 (GE Healthcare, Sweden). with petroleum ether (60–90 °C)–ethyl acetate (100:5, TLC analysis was carried out with glass plate precoated 100:10, 100:20, 100:50, 1:1 and 0:100, v/v) to yield six silica gel (HSGF254, Yantai Jiangyou Silicone Develop- fractions (Fr.A–Fr.F). Fr E was subjected to Sephadex ment Co. Ltd., Qingdao, China). LH-20 eluting with CH2Cl2–MeOH (1:1), and further recrystallization to yield compounds 2 (prtopine, 40 mg). Sample preparation Te precipitate during extraction of dichlorometh- Te air-dried and crushed fruits of M. microcarpa ane was separated by mci gel CHP20P CC eluting with (15.0 kg) were extracted with 95% EtOH (18 L) under MeOH–H2O (85:15) to aford compound 7 (cheleryth- cold maceration 3 times, each time for 7 days, respec- rine, 30 mg). tively. Te combined extracts were concentrated in vacuo to yield crude ethanol extracts, which was suspended NMR spectral analysis 1 13 in H2O, successively partitioned with Petroleum ether H and C NMR spectra were acquired with Bruker (PE), Methylene chloride (CH2Cl2) and N-butyl alcohol AV-600 NMR spectrometer (Billerica, MA, USA) using Sai et al. BMC Chemistry (2020) 14:5 Page 3 of 11 Fig. 1 The high resolution mass spectra and secondary mass spectra for 9 known compounds Sai et al. BMC Chemistry (2020) 14:5 Page 4 of 11 Fig. 2 The high resolution mass spectra and secondary mass spectra for 5 unknown compounds solvent signals (CDCl3: δH 7.26/δC 77.16, CD3OD: δH HL-60, and MTT assay against MCF-7 and A-549 [10, 3.31/δC 49.00), with tetramethylsilane (TMS) as an inter- 11]. nal standard. In the trypan blue method, cells in logarithmic growth 4 were seeded at 5 × 10 cells/mL in 24-well microplates, Cytotoxic activity test in vitro 2 mL/well, and incubated with various concentrations of Te method of cytotoxic activity test in vitro had based the compounds at 37 °C for 72 h. 50 μL suspension was on our previously published work [9]. HL-60 (human taken from each well, and 50 μL 0.4% trypan blue was leukaemia cell lines), MCF-7 (human breast cancer cell added to mix well, and observed under an optical micro- lines), A-549 (human lung adenocarcinoma cell lines), scope within 3 min.
Recommended publications
  • The Developmental and Genetic Bases of Apetaly in Bocconia Frutescens
    Arango‑Ocampo et al. EvoDevo (2016) 7:16 DOI 10.1186/s13227-016-0054-6 EvoDevo RESEARCH Open Access The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae) Cristina Arango‑Ocampo1, Favio González2, Juan Fernando Alzate3 and Natalia Pabón‑Mora1* Abstract Background: Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; how‑ ever, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results: We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci- specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes inB. frute- scens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions: Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans.
    [Show full text]
  • Current Plant Availability List, Including Descriptions 2021 Issue No 6: Final Autumn Stock Pelham Plants Nursery Ltd
    Current plant availability list, including descriptions 2021 Issue no 6: Final autumn stock Pelham Plants Nursery Ltd Listed below are the plants currently available. Please use this list to order from us by email at [email protected] or over the phone on 07377 145970. Please use the most recent version of this list as more varieties are being added all the time. Some cultivars produced in small numbers may also sell out. We are proud of ‘home growing’ all our plants. The list will grow and change substantially as many new varieties become available week by week. It is also advisable to book to visit the nursery in person for the best range and advice. It can be difficult to keep this list up to date at our busiest times or when batches are small. We reserve the right to withdraw plants or changes prices without notice. Full explanation, delivery charges and terms and conditions are listed on our website www.pelhamplants.co.uk Plants currently Approx Price Description available pot size Acis autumnalis. AGM. 0.5L £4.50 A little 'Leucojum' now renamed Acis. Little white bonnets in autumn over grassy foliage and stems. Ideal for a focal pot. 10cm. Aconitum 'Blue Opal'. 2.0L £8.50 Opalescent violet-blue flowers in late summer. Aconitum carmichaelii 2.0L £8.50 syn. Late Vintage. Originally a seed strain, this is a valuable late 'Spätlese'. summer flowering selection with lilac-purple flowers from pale green buds. Aconitum carmichaelii 2.0L £8.50 Late summer flowering in a particularly good cobalt blue.
    [Show full text]
  • Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
    REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects.
    [Show full text]
  • Big Island Invasive Species Committee (BIISC) Highlights BIISC
    Big Island Invasive Species Committee (BIISC) Highlights BIISC surveyed 6,244 acres for 5 key target species, and two incidental species and controlled a total of 16,608 acres, 17,610 individual plants were treated, and a total of 4,357 worker hours were used. An additional 165 miles of road were surveyed by the early detection crew looking for and mapping 138 potentially incipient invasive species. Miconia calvescens • BIISC continues to focus containment strategy along a 40-mile containment buffer between Malama Ki in lower Puna to Ninole in the Hamakua districts. Surveys focused in the Hilo, Hamakua and Puna districts. • Completed aerial surveys in the upper Hamakua district at elevations between 1,400' and 1,600'. A total of 1,598 acres were surveyed by air, while ground crews removed a total of 687 plants in this area. • Expanded survey and control effort from 1,600' to the 1,800' elevation above the core population in Onomea after finding a small number of plants at the 1,700' elevation. • Began work in a 52-acre control block in the Nanawale Forest Reserve. This project was terminated after data analysis revealed the feasibility to complete the mission was questionable after finding a large number of plants within the control area, as well as adjacent private parcels. • Completed survey and control blocks in the Makuu Forest Reserve. DOFAW donated 12 hours of air time to this effort which allowed BIISC to drop the ground crew at the far southern end of the survey sites to limit walk time to the survey and control blocks.
    [Show full text]
  • Landscape Plants Rated by Deer Resistance
    E271 Bulletin For a comprehensive list of our publications visit www.rce.rutgers.edu Landscape Plants Rated by Deer Resistance Pedro Perdomo, Morris County Agricultural Agent Peter Nitzsche, Morris County Agricultural Agent David Drake, Ph.D., Extension Specialist in Wildlife Management The following is a list of landscape plants rated according to their resistance to deer damage. The list was compiled with input from nursery and landscape professionals, Cooperative Extension personnel, and Master Gardeners in Northern N.J. Realizing that no plant is deer proof, plants in the Rarely Damaged, and Seldom Rarely Damaged categories would be best for landscapes prone to deer damage. Plants Occasionally Severely Damaged and Frequently Severely Damaged are often preferred by deer and should only be planted with additional protection such as the use of fencing, repellents, etc. Success of any of these plants in the landscape will depend on local deer populations and weather conditions. Latin Name Common Name Latin Name Common Name ANNUALS Petroselinum crispum Parsley Salvia Salvia Rarely Damaged Tagetes patula French Marigold Ageratum houstonianum Ageratum Tropaeolum majus Nasturtium Antirrhinum majus Snapdragon Verbena x hybrida Verbena Brugmansia sp. (Datura) Angel’s Trumpet Zinnia sp. Zinnia Calendula sp. Pot Marigold Catharanthus rosea Annual Vinca Occasionally Severely Damaged Centaurea cineraria Dusty Miller Begonia semperflorens Wax Begonia Cleome sp. Spider Flower Coleus sp. Coleus Consolida ambigua Larkspur Cosmos sp. Cosmos Euphorbia marginata Snow-on-the-Mountain Dahlia sp. Dahlia Helichrysum Strawflower Gerbera jamesonii Gerbera Daisy Heliotropium arborescens Heliotrope Helianthus sp. Sunflower Lobularia maritima Sweet Alyssum Impatiens balsamina Balsam, Touch-Me-Not Matricaria sp. False Camomile Impatiens walleriana Impatiens Myosotis sylvatica Forget-Me-Not Ipomea sp.
    [Show full text]
  • Highly Variable Chloroplast Genome from Two Endangered Papaveraceae Lithophytes Corydalis Saxicola and C
    Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis saxicola and C. tomentella fengming Ren Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Medicinal Plant Development Liqiang Wang Heze University Ying Li Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Medicinal Plant Development Wei Zhuo Chongqing Insititute of Medicinal Plant Cultivation Zhichao Xu Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Medicinal Plant Development Haojie Guo Wuhu Institute of Technology Yan Liu Chongqing Institute of Medicinal Plant Cultivation Ranran Gao Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Medicinal Plant Development Jingyuan Song ( [email protected] ) Research article Keywords: Corydalis saxicola, Corydalis tomentella, Papaveraceae, taxonomic study, cp genome Posted Date: April 17th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-18411/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Ecology and Evolution on March 19th, 2021. See the published version at https://doi.org/10.1002/ece3.7312. Page 1/22 Abstract Backgroud: Corydalis DC., the largest genus of Papaveraceae, is recognized as one of the most taxonomically challenging plant taxa. However, no complete chloroplast (cp) genome for this genus has been reported to date. Results: We sequenced four complete cp genomes of two anities Corydalis saxicola and C. tomentellav of the genus Corydalis, compared these cp genomes with each other and others from Papaveraceae, and analyzed the phylogenetic relationships based on the sequences of common CDS.
    [Show full text]
  • Classification of Mosquitoes in Tribe Aedini 925
    FORUM Classification of Mosquitoes in Tribe Aedini (Diptera: Culicidae): Paraphylyphobia, and Classification Versus Cladistic Analysis HARRY M. SAVAGE Centers for Disease Control and Prevention, P.O. Box 2087, Fort Collins, CO 80522 J. Med. Entomol. 42(6): 923Ð927 (2005) Downloaded from https://academic.oup.com/jme/article/42/6/923/886357 by guest on 29 September 2021 ABSTRACT Many mosquito species are important vectors of human and animal diseases, and others are important nuisance species. To facilitate communication and information exchange among pro- fessional groups interested in vector-borne diseases, it is essential that a stable nomenclature be maintained. For the Culicidae, easily identiÞable genera based on morphology are an asset. Major changes in generic concept, the elevation of 32 subgenera within Aedes to generic status, and changes in hundreds of species names proposed in a recent article demand consideration by all parties interested in mosquito-borne diseases. The entire approach to Aedini systematics of these authors was ßawed by an inordinate fear of paraphyletic taxa or Paraphylyphobia, and their inability to distinguish between classiÞcation and cladistic analysis. Taxonomists should refrain from making taxonomic changes based on preliminary data, and they should be very selective in assigning generic names to only the most important and well-deÞned groups of species. KEY WORDS Aedini classiÞcation, Aedes, Ochlerotatus, paraphylyphobia, mosquito classiÞcation MANY MOSQUITO SPECIES IN the tribe Aedini, a cosmo- In this communication, I brießy review taxonomic politan group represented by 11 genera and Ϸ1,239 categories in a zoological classiÞcation, the Interna- species, are important vectors of human and animal tional Code of Zoological Nomenclature (the Code), diseases, and many others are of considerable eco- the development of generic concept within the Cu- nomic importance as nuisance or pest species.
    [Show full text]
  • Additions to the New Flora of Vermont
    Gilman, A.V. Additions to the New Flora of Vermont. Phytoneuron 2016-19: 1–16. Published 3 March 2016. ISSN 2153 733X ADDITIONS TO THE NEW FLORA OF VERMONT ARTHUR V. GILMAN Gilman & Briggs Environmental 1 Conti Circle, Suite 5, Barre, Vermont 05641 [email protected] ABSTRACT Twenty-two species of vascular plants are reported for the state of Vermont, additional to those reported in the recently published New Flora of Vermont. These are Agrimonia parviflora, Althaea officinalis , Aralia elata , Beckmannia syzigachne , Bidens polylepis , Botrychium spathulatum, Carex panicea , Carex rostrata, Eutrochium fistulosum , Ficaria verna, Hypopitys lanuginosa, Juncus conglomeratus, Juncus diffusissimus, Linum striatum, Lipandra polysperma , Matricaria chamomilla, Nabalus racemosus, Pachysandra terminalis, Parthenocissus tricuspidata , Ranunculus auricomus , Rosa arkansana , and Rudbeckia sullivantii. Also new are three varieties: Crataegus irrasa var. irrasa , Crataegus pruinosa var. parvula , and Viola sagittata var. sagittata . Three species that have been reported elsewhere in 2013–2015, Isoetes viridimontana, Naias canadensis , and Solidago brendiae , are also recapitulated. This report and the recently published New Flora of Vermont (Gilman 2015) together summarize knowledge of the vascular flora of Vermont as of this date. The New Flora of Vermont was recently published by The New York Botanical Garden Press (Gilman 2015). It is the first complete accounting of the vascular flora of Vermont since 1969 (Seymour 1969) and adds more than 200 taxa to the then-known flora of the state. However, the manuscript for the New Flora was finalized in spring 2013 and additional species are now known: those that have been observed more recently, that have been recently encountered (or re-discovered) in herbaria, or that were not included because they were under study at the time of finalization.
    [Show full text]
  • Bocconia and Macleaya Author(S): J
    Bocconia and Macleaya Author(s): J. Hutchinson Source: Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew), Vol. 1920, No. 8 (1920), pp. 275-282 Published by: Springer on behalf of Royal Botanic Gardens, Kew Stable URL: http://www.jstor.org/stable/4120232 Accessed: 14-06-2016 14:47 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Royal Botanic Gardens, Kew, Springer are collaborating with JSTOR to digitize, preserve and extend access to Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew) This content downloaded from 131.172.36.29 on Tue, 14 Jun 2016 14:47:17 UTC All use subject to http://about.jstor.org/terms 275 an old but no longer common species, 28 ft. high and 5 ft. in girth of trunk; and a fine healthy tree of the newer Japanese M. hypoleuca over 30 ft. high. There is a good collection of hardy bamboos on the lower, damper part of the garden, and it was interesting to see Phyllo- stachys aurea flowering, although not gratifying, since it portends the flowering and consequent death of the species throughout the country. XLIV.-BOCCONIA AND MACLEAYA. J. HUTCHINSON. The genus Bocconia (Papaveraceae) was founded by Linnaeus* in 1737, the type species being B.
    [Show full text]
  • Influence of Different Elicitors on BIA Production in Macleaya Cordata
    www.nature.com/scientificreports OPEN Infuence of diferent elicitors on BIA production in Macleaya cordata Peng Huang1,2,7, Liqiong Xia3,7, Li Zhou1,7, Wei Liu1,4, Peng Wang1, Zhixing Qing5* & Jianguo Zeng1,6* Sanguinarine (SAN) and chelerythrine (CHE) have been widely used as substitutes for antibiotics for decades. For a long time, SAN and CHE have been extracted from mainly Macleaya cordata, a plant species that is a traditional herb in China and belongs to the Papaveraceae family. However, with the sharp increase in demand for SAN and CHE, it is necessary to develop a new method to enhance the supply of raw materials. Here, we used methyl jasmonate (MJ), salicylic acid (SA) and wounding alone and in combination to stimulate aseptic seedlings of M. cordata at 0 h, 24 h, 72 h and 120 h and then compared the diferences in metabolic profles and gene expression. Ultimately, we found that the efect of using MJ alone was the best treatment, with the contents of SAN and CHE increasing by 10- and 14-fold, respectively. However, the increased SAN and CHE contents in response to combined wounding and MJ were less than those for induced by the treatment with MJ alone. Additionally, after MJ treatment, SAN and CHE biosynthetic pathway genes, such as those encoding the protopine 6-hydroxylase and dihydrobenzophenanthridine oxidase enzymes, were highly expressed, which is consistent with the accumulation of SAN and CHE. At the same time, we have also studied the changes in the content of synthetic intermediates of SAN and CHE after elicitor induction.
    [Show full text]
  • J\V1ERICANI Iorticulturisf DECEMBER 1981
    j\V1ERICANI IORTICULTURISf DECEMBER 1981 / lOmatoes in OCtober, November, and December? f course.. .and in January and February too with nutrients too. Your plants gradually absorb wnat they require Windowsill Gardens Nutriponics® Kits. If you simply and easily, eliminating the main causes of house O nave a sunny window you can grow tomatoes, plant failure; inadequate moisture and overwatering. peppers, geraniums, sunflowers, or whatever you wish in Nutriponics is a fully tested system. Over 65% of our our Gro-thru N Pots combined with our handsome planters customers reorder equipmemt and supplies, and kits are shown above. You can even grow your Nutriponic plants immediately available to get you started. Each includes our from seed. beautifully illustrated 50-page book on Nutriponics, to­ The lower container in this new system acts as a reservoir gether with Liqui-Soil, N Gro-thru Pots, and planting which enables the plant to take moisture as it needs it..and medium. Fill out the order coupon today. Windowsill Gardens, Grafton, N.H. 03240, Dept. AH D Senti Information Name, ___________~ =~_ D Send $4.95 kit Street'--______________ D Send $9.95 kit City State: _____Zip __ Include $2.00 for shipping WINDOWSILL GARDENS Grafton, New Hampshire 03240 #1ERICAN HORfICULTURIST DECEMBER 1981 FEATURES COLUMNS Camellias in Containers 16 Guest Editorial: Lessons We Can Learn Text and Photography by Anthony DeBlasi from Chelsea 2 A. St. Clair Wright Book Reviews 4 Gilbert S. Daniels Pronunciation Guide 8 Strange Relatives: The Cashew Family 9 Jane Steffey The Herb Garden: Thyme 13 Betty Ann Laws The Gotelli Dwarf Conifer Collection 20 Text by Steve Bender Photography by Barbara W.
    [Show full text]
  • Downloaded from Protein Data Bank for Illustration in Ccp4mg
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.333484; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Jurassic NLR: conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1 Hiroaki Adachi1, Toshiyuki Sakai1, Jiorgos Kourelis1, Jose L. Gonzalez Hernandez2, Abbas Maqbool1 and Sophien Kamoun1* 1The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK 2Agronomy, Horticulture and Plant Sciences Department, South Dakota State University, Brookings, South Dakota, US *For correspondence: [email protected] ABSTRACT In plants, NLR immune receptors generally exhibit hallmarks of rapid evolution even at the intraspecific level. We reconstructed the evolutionary history of ZAR1, an atypically conserved NLR that traces its origin to early flowering plant lineages ~220 to 150 million years ago (Jurassic period). Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition, intramolecular interactions and cell death activation. This uncovered a new conserved surface on the ZAR1 resistosome underside that is required for cell death induction. Throughout its evolution, ZAR1 acquired novel features, such as a C-terminal integration of a thioredoxin-like domain. ZAR1 duplicated into two paralog families, which underwent distinct evolutionary paths. We conclude that ZAR1 stands out among angiosperm NLRs for having experienced relatively limited gene duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 did also give rise to non-canonical NLR proteins with integrated domains and degenerated molecular features.
    [Show full text]