Classification of Mosquitoes in Tribe Aedini 925
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sampling Adults by Animal Bait Catches and by Animal-Baited Traps
Chapter 5 Sampling Adults by Animal Bait Catches and by Animal-Baited Traps The most fundamental method for catching female mosquitoes is to use a suit able bait to attract hungry host-seeking individuals, and human bait catches, sometimes euphemistically called landing counts, have been used for many years to collect anthropophagic species. Variations on the simple direct bait catch have included enclosing human or bait animals in nets, cages or traps which, in theory at least, permit the entrance of mosquitoes but prevent their escape. Other attractants, the most widely used of which are light and carbon dioxide, have also been developed for catching mosquitoes. In some areas, especially in North America, light-traps, with or without carbon dioxide as a supplement, have more or less replaced human and animal baits as a routine sampling method for several species (Chapter 6). However, despite intensive studies on host-seeking behaviour no really effective attractant has been found to replace a natural host, and consequently human bait catches remain the most useful single method of collecting anthropophagic mosquitoes. Moreover, although bait catches are not completely free from sampling bias they are usually more so than most other collecting methods that employ an attractant. They are also easily performed and require no complicated or expensive equipment. HUMAN BAIT CATCHES Attraction to hosts Compounds used by mosquitoes to locate their hosts are known as kairomones, that is substances from the emitters (hosts) are favourable to the receiver (mosquitoes) but not to themselves. Emanations from hosts include heat, water vapour, carbon dioxide and various host odours. -
California Encephalitis Orthobunyaviruses in Northern Europe
California encephalitis orthobunyaviruses in northern Europe NIINA PUTKURI Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences Academic Dissertation To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall 13 at the Main Building, Fabianinkatu 33, Helsinki, 23rd September 2016 at 12 noon. Helsinki 2016 Supervisors Professor Olli Vapalahti Department of Virology and Veterinary Biosciences, Faculty of Medicine and Veterinary Medicine, University of Helsinki and Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland Professor Antti Vaheri Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland Reviewers Docent Heli Harvala Simmonds Unit for Laboratory surveillance of vaccine preventable diseases, Public Health Agency of Sweden, Solna, Sweden and European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden Docent Pamela Österlund Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland Offical Opponent Professor Jonas Schmidt-Chanasit Bernhard Nocht Institute for Tropical Medicine WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Disease Hamburg, Germany ISBN 978-951-51-2399-2 (PRINT) ISBN 978-951-51-2400-5 (PDF, available -
A NEW SUBGENUS of the GENUS Sabei;Hes (DIPTERA: CULICIDAE) L
AUGUST1991 1 A NEW SUBGENUS OF THE GENUS sABEI;HEs (DIPTERA: CULICIDAE) l RALPH E. HARBACH~ Walter Reed Biosystematics Unit, Department of Entomology, Walter Reed Army Institute of Research, Washington, DC 20307-5100. ABSTRACT. A new subgenus, Peytonulus, of the genus Sabethes Robineau-Desvoidy is estab- lished for seven species previously included in the subgenus Sabethinus Lutz. The subgenus is contrasted with the other subgenera of Sabethes and the type species is illustrated. INTRODUCTION The new subgenus is uniquely characterized by several autapomorphic features, the highly Because mosquitoes of the genus Sabethes modified larval seta l-VII and its missing pupal Robineau-Desvoidy are known to harbor and homolog being the most notable and conspicu- transmit arboviruses (Galindo et al. 1959, Mat- ous. Based on these distinctive features, the tingly et al. 1973), information on their identifi- subgenus PeytonuZus is erected for the seven cation andphylogenetic relationships isof great species listed above, and the following informa- importance. This is the third in a series of tion isprovided for its separation from the other papers that deals with taxonomic problems in- subgenera within the genus Sabethes. volving nominal taxa within this genus. The first The descriptive terminology and abbrevia- paper dealt with the transfer of a species from tions follow Harbach and Knight (1980, 1982) Sabethesto a new subgenusin WyeomyiaTheobald and Harbach and Peyton (1990a, 1990b). The (Harbach and Peyton 1990a). The second dealt illustrations are based on specimens deposited with the transfer of the subgenus Davismyia in the National Museum of Natural History, Lane and Cerqueira and its type species from Smithsonian Institution. -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
Identification Key for Mosquito Species
‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are. -
Zootaxa, New Records of Haemagogus
Zootaxa 1779: 65–68 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) New records of Haemagogus (Haemagogus) from Northern and Northeastern Brazil (Diptera: Culicidae, Aedini) JERÔNIMO ALENCAR1, FRANCISCO C. CASTRO2, HAMILTON A. O. MONTEIRO2, ORLANDO V. SILVA 2, NICOLAS DÉGALLIER3, CARLOS BRISOLA MARCONDES4*, ANTHONY E. GUIMARÃES1 1Laboratório de Diptera, Departamento de Entomologia, Instituto Oswaldo Cruz, Av. Brasil 4365, CEP: 21045-900 Manguinhos, Rio de Janeiro RJ, Brazil. 2Laboratório de Arbovírus, Instituto Evandro Chagas, Av. Almirante Barroso 492, CEP: 66090-000, Belém, PA, Brazil. 3Institut de Recherche pour le Développement (IRD-UMR182), LOCEAN-IPSL, case 100, 4 Place Jussieu, 75252 Paris Cedex 05, France 4 Departamento de Microbiologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040- 900 Florianópolis, Santa Catarina, Brazil Haemagogus (Haemagogus) is restricted mostly to the Neotropical Region, including Central America, South America and islands (Arnell, 1973). Of the 24 recognized species of this subgenus, 15 occur in South America, including the Anti- lles. However, the centre of distribution of the genus Haemagogus is Central America, where 19 of the 28 species (including four species of the subgenus Conopostegus Zavortink [1972]) occur (Arnell, 1973). Haemagogus (Hag.) includes species with great significance as vectors of Yellow Fever (YF) virus and other arbovi- rus, both experimentally (Waddell, 1949) and in the field (Vasconcelos, 2003). During entomological surveys from 1982 to 2004, the Arbovirus Laboratory of Evandro Chagas Institute obtained specimens of Haemagogus from several localities not reported in the literature. New records are listed in Table 1 and study localities shown on Figure 1. -
The Developmental and Genetic Bases of Apetaly in Bocconia Frutescens
Arango‑Ocampo et al. EvoDevo (2016) 7:16 DOI 10.1186/s13227-016-0054-6 EvoDevo RESEARCH Open Access The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae) Cristina Arango‑Ocampo1, Favio González2, Juan Fernando Alzate3 and Natalia Pabón‑Mora1* Abstract Background: Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; how‑ ever, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results: We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci- specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes inB. frute- scens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions: Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans. -
Towards a Better Understanding of Rift Valley Fever Epidemiology in The
Balenghien et al. Veterinary Research 2013, 44:78 http://www.veterinaryresearch.org/content/44/1/78 VETERINARY RESEARCH REVIEW Open Access Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean Thomas Balenghien1†, Eric Cardinale1,2†, Véronique Chevalier3†, Nohal Elissa4†, Anna-Bella Failloux5*†, Thiery Nirina Jean Jose Nipomichene4†, Gaelle Nicolas3†, Vincent Michel Rakotoharinome6†, Matthieu Roger1† and Betty Zumbo7† Abstract Rift Valley fever virus (Phlebovirus,Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007–2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean. Table of contents humans, symptoms vary from a flu-like syndrome to en- cephalitic, ocular or hemorrhagic syndrome. The case fa- 1. Disease and transmission tality rate of the latter form can be as high as 50% [3]. -
A Review of the Mosquito Species (Diptera: Culicidae) of Bangladesh Seth R
Irish et al. Parasites & Vectors (2016) 9:559 DOI 10.1186/s13071-016-1848-z RESEARCH Open Access A review of the mosquito species (Diptera: Culicidae) of Bangladesh Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3 Abstract Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh. Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis. Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come. Keywords: Species list, Mosquitoes, Bangladesh, Culicidae Background separation of Pakistan and India in 1947, Aslamkhan [11] Several diseases in Bangladesh are caused by mosquito- published checklists for mosquito species, indicating which borne pathogens. Malaria remains an important cause of were found in East Pakistan (Bangladesh). -
Isolation and Identification of Alkaloids from Macleaya Microcarpa by UHPLC–Q-TOF-MS and Their Cytotoxic Activity in Vitro, An
Sai et al. BMC Chemistry (2020) 14:5 https://doi.org/10.1186/s13065-020-0660-1 BMC Chemistry RESEARCH ARTICLE Open Access Isolation and identifcation of alkaloids from Macleaya microcarpa by UHPLC– Q-TOF-MS and their cytotoxic activity in vitro, antiangiogenic activity in vivo Chunmei Sai1,2, Jian’an Wang1, Binjie Li3, Lin Ding1, Huiyun Wang1, Qibao Wang1, Huiming Hua3, Fangpeng Zhang2 and Qiang Ren1* Abstract Background: Extensive bioactivities of alkaloids from the genus Macleaya (Macleaya cordata (Willd.) R. Br. and Macleaya microcarpa (Maxim.) Fedde) have been widely reported, as well as more and more concerned from the sci- entifc communities. However, systematic research on the phytochemical information of M. microcarpa is incomplete. The aim of this study was to rapidly and conveniently qualitative analyze alkaloids from M. microcarpa by ultra-perfor- mance liquid chromatography/quadrupole-time-of-fght mass spectrometry (UHPLC–Q-TOF-MS) using accurate mass weight and characteristic fragment ions, furthermore separate and identify the main alkaloids, test antitumor activity in vitro and antiangiogenic activity in vivo. Results: A total of 14 alkaloids from fruits of M. microcarpa were identifed by UHPLC–Q-TOF-MS, including 5 pro- topines, 2 benzophenanthridines, 1 dimer, 1 dihydrobenzophenanthridines and 5 unknown structure compounds. Two major alkaloids were isolated by various column chromatographic methods. Their structures were determined by NMR data and related literatures. The two major alkaloids were evaluated for intro cytotoxic activities against HL-60, MCF-7, A-549, and in vivo antiangiogenic activity using transgenic zebrafsh. Conclusions: Current qualitative method based on UHPLC–Q-TOF-MS technique provided a scientifc basis for isola- tion, structural identifcation, and in vitro or in vivo pharmacological further study of alkaloids from M. -
Diptera: Culicidae: Aedini) Into New Geographic Areas
European Mosquito Bulletin, 27 (2009), 10-17. Journal of the European Mosquito Control Association ISSN 1460-6127; w.w.w.e-m-b.org First published online 1 October 2009 Recent introductions of aedine species (Diptera: Culicidae: Aedini) into new geographic areas John F. Reinert Center for Medical, Agricultural and Veterinary Entomology (CMAVE), United States Department of Agriculture, Agricultural Research Service, 1600/1700 S.W. 23rd Drive, Gainesville, FL 32608-1067, USA, Email: [email protected]. Abstract Information on introductions to new geographic areas of species in the aedine generic-level taxa Aedimorphus, Finlaya, Georgecraigius, Halaedes, Howardina, Hulecoeteomyia, Rampamyia, Stegomyia, Tanakaius and Verrallina is provided. Key words: Aedimorphus, Finlaya, Georgecraigius atropalpus, Halaedes australis, Howardina bahamensis, Hulecoeteomyia japonica japonica, Rampamyia notoscripta, Stegomyia aegypti, Stegomyia albopicta, Tanakaius togoi, Verrallina Introduction World. Dyar (1928), however, notes that there are no nearly related species in As indicated in the series of papers on the American continent, but many such the phylogeny and classification of in the Old World, especially in Africa, mosquitoes in tribe Aedini (Reinert et and he considered that it was probably al., 2004, 2006, 2008), some aedine the African continent from which the species have been introduced into new species originated”. Christophers also geographical areas in recent times. noted that “The species is almost the Species of Aedini found outside of their only, if not the only, mosquito that, with natural ranges are listed below with their human agency, is spread around the literature citations. whole globe. But in spite of this wide zonal diffusion its distribution is very Introductions of Aedine Species to strictly limited by latitude and as far as New Areas present records go it very rarely occurs beyond latitudes of 45o N. -
Diptera: Culicidae) in Southern Iran Accepted: 07-02-2017
International Journal of Mosquito Research 2017; 4(2): 27-38 ISSN: 2348-5906 CODEN: IJMRK2 IJMR 2017; 4(2): 27-38 Larval habitats, affinity and diversity indices of © 2017 IJMR Received: 06-01-2017 Culicinae (Diptera: Culicidae) in southern Iran Accepted: 07-02-2017 Ahmad-Ali Hanafi-Bojd Ahmad-Ali Hanafi-Bojd, Moussa Soleimani-Ahmadi, Sara Doosti and Department of Medical Entomology and Vector Control, Shahyad Azari-Hamidian School of Public Health, Tehran University of Medical Sciences, Abstract Tehran, Iran. An investigation was carried out studying the ecology of the larvae of Culicinae (Diptera: Culicidae) in Moussa Soleimani-Ahmadi Bashagard County, Hormozgan Province, southern Iran. Larval habitat characteristics were recorded Social Determinants in Health according to habitat situation and type, vegetation, sunlight situation, substrate type, turbidity and water Promotion Research Center, depth during 2009–2011. Physicochemical parameters of larval habitat waters were analyzed for Hormozgan University of electrical conductivity (µS/cm), total alkalinity (mg/l), turbidity (NTU), total dissolved solids (mg/l), Medical Sciences, Bandar Abbas, total hardness (mg/l), acidity (pH), water temperature (°C) and ions such as calcium, chloride, Iran. magnesium and sulphate. In total, 1479 third- and fourth-instar larvae including twelve species representing four genera were collected and identified: Aedes vexans, Culex arbieeni, Cx. Sara Doosti bitaeniorhynchus, Cx. mimeticus, Cx. perexiguus, Cx. quinquefasciatus, Cx. sinaiticus, Cx. theileri, Cx. Department of Medical tritaeniorhynchus, Culiseta longiareolata, Ochlerotatus caballus and Oc. caspius. All species, except Cx. Entomology and Vector Control, bitaeniorhynchus, were reported for the first time in Bashagard County. Culiseta longiareolata (37.5%), School of Public Health, Tehran Cx.