Evolution of Reproductive Morphology in the Papaveraceae S.L. (Papaveraceae and Fumariaceae, Ranunculales)

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Reproductive Morphology in the Papaveraceae S.L. (Papaveraceae and Fumariaceae, Ranunculales) ® International Journal of Plant Developmental Biology ©2010 Global Science Books Evolution of Reproductive Morphology in the Papaveraceae s.l. (Papaveraceae and Fumariaceae, Ranunculales) Oriane Hidalgo • Stefan Gleissberg* Department of Environmental and Plant Biology, Ohio University, 500 Porter Hall, Athens, Ohio 45701, USA Corresponding author : * [email protected] ABSTRACT Flower bearing branching systems are of major importance for plant reproduction, and exhibit significant variation between and within lineages. A key goal in evolutionary biology is to discover and characterize changes in the genetic programming of development that drive the modification and diversification of morphology. Here we present a synopsis of reproductive architecture in Papaveraceae s.l., a lineage in which the evolution of inflorescence determinacy, flower structure and symmetry, and effloration sequence produced unique reproduc- tive syndromes. We discuss the potential of this group to study key issues on the evolution of reproductive structures, and refer to candidate gene families, choice of landmark species, and available tools for developmental genetic investigations. _____________________________________________________________________________________________________________ Keywords: effloration sequence, flower organ identity, flower symmetry, Fumariaceae, inflorescence determinacy Abbreviations: AP1, APETALA1; AP3, APETALA3; CEN, CENTRORADIALIS; CRC, CRABS CLAW; CYC, CYCLOIDEA; FLO, FLORICAULA; FUL, FRUITFULL; LFY, LEAFY; PI, PISTILLATA; TFL1, TERMINAL FLOWER1; VIGS, Virus-Induced Gene Silencing CONTENTS INTRODUCTION........................................................................................................................................................................................ 76 FLORAL AND INFLORESCENCE DIVERSITY IN PAPAVERACEAE S.L............................................................................................ 79 Floral diversity......................................................................................................................................................................................... 79 Inflorescence diversity............................................................................................................................................................................. 79 CANDIDATE GENE APPROACHES TO FLOWER AND INFLORESCENCE DIVERSITY IN PAPAVERACEAE S.L.: STATE-OF- THE-ART AND PROSPECTS..................................................................................................................................................................... 80 Floral organ identity genes ...................................................................................................................................................................... 80 Floral symmetry genes............................................................................................................................................................................. 82 Floral meristem identity genes................................................................................................................................................................. 82 Tools available for investigation.............................................................................................................................................................. 83 CONCLUDING REMARKS ....................................................................................................................................................................... 83 ACKNOWLEDGEMENTS ......................................................................................................................................................................... 83 REFERENCES............................................................................................................................................................................................. 83 _____________________________________________________________________________________________________________ INTRODUCTION A great diversity of flowers and inflorescences is seen early in angiosperm history, a morphological radiation The flower, the basic reproductive organ of angiosperms, is referred to as the “abominable mystery” by Darwin (Crepet incomparably more diverse than equivalent structures found 1998, 2000; Friedman 2009). In fact, principal trends such in any other group of organisms (Barrett 2002). This extra- as floral symmetry shifts and synorganization, are already ordinary reproductive variety is further increased by a wide found in the fossil record and in extant basal angiosperms, range of specialized branching systems clustering flowers, but further appear recurrently throughout angiosperm the inflorescences (Weberling 1992), which expose flowers phylogeny (Soltis et al. 2009). This makes it difficult to and then fruits with their seeds to ensure successful repro- infer ancestral character states in the reconstruction of the duction (Prusinkiewicz 2007). The evolution of flowers and “primitive” flower (for one of the most recent attempts, see inflorescences is logically tightly connected (Coen and Endress and Doyle 2009). The fundamental problem that Nugent 1994). The huge morphological diversity of flowers evolutionary developmental biology addresses is the and inflorescences raises the question of its evolutionary correspondence of morphological traits and their underlying origin through re-orchestration of genetic control elements. developmental processes in the comparison of different An integrated understanding of floral and inflorescence lineages. A common approach is to study the genetic regu- diversification constitutes a major task of plant evolutionary lation of specific morphological traits in isolation. However, biology, and can also be expected to have a tremendous and traits are often functionally linked and may exhibit coordi- economically relevant impact on plant breeding strategies. nate evolution. Understanding the genetic basis of the evo- However, available evolutionary developmental (evo-devo) lution of such morphological syndromes requires a tho- data on the topic remain so far mostly restricted to a few rough examination of multiple traits that show interdepen- model systems widely dispersed within flowering plant dency. A prime example is the coordinated evolution of lineages. flower and inflorescence morphology. So far, studies have Received: 15 May, 2009. Accepted: 21 April, 2010. Invited Review International Journal of Plant Developmental Biology 4 (Special Issue 1), 76-85 ©2010 Global Science Books Fig. 1 Summarized phylogeny of the Papaveraceae s.l. based on molecular inferences and traditional classifications (Hoot et al. 1997; Lidén et al. 1997; Wang et al. 2009, and references therein). Flower symmetry and determinate/indeterminate inflorescence states are indicated for all genera. Flower picture, flower diagram and inflorescence type scheme are given for some selected representatives of the family throughout its phylogeny. : Taxonomic groups of traditional classifications for which monophyly is not confirmed by current molecular data. revealed an astonishing degree of conservation of develop- lopmental studies in angiosperms (Kramer 2009). The pop- mental mechanisms across flowering plants. Therefore, for py relatives in the broad circumscription (Papaveraceae s.l.), non-model lineages, a candidate gene approach that uses the comprise around 760 species and 44 genera (Stevens 2001 evidence from established model systems remains a straight- onwards), and is constituted of two main groups, the Papa- forward and powerful strategy to address morphological veraceae (poppies in the narrower sense) on the one hand, evolution. Because the current major model systems are and the Fumariaceae on the other (the fumitory family; or representatives of either core eudicots (e.g. Antirrhinum L., Fumarioideae subfamily of Papaveraceae s.l.). An isolated Arabidopsis (DC.) Heynh.) or monocots (e.g. Oryza L.), taxon, Pteridophyllum racemosum Siebold & Zucc., often and efforts understandably concentrate on plants of econo- viewed as a separate family Pteridophyllaceae (or Pterido- mic importance, it has been realized that research in basal phylloideae subfamily of Papaveraceae s.l.), may be sister angiosperms and basal eudicots is especially needed, as it to Fumariaceae (Wang et al. 2009; Fig. 1). Papaveraceae s.l. will be instrumental in deciphering major evolutionary tran- has attracted researchers because various diversity patterns sitions in the regulation of development (Soltis et al. 2002). invite comparative studies. The family received much atten- Research in the Papaveraceae s.l. may be a very useful tion for its biochemical richness in alkaloids (Hesse 2002; response to this current need. This family belongs to the Ziegler et al. 2006). Diversity in leaf shape (Gleissberg and Ranunculales, the order which diverged first in the eudicot Kadereit 1999) and inflorescence morphology (Günther lineage (Soltis et al. 2007c; APG III 2009), and is early 1975a, 1975b) has also been studied. branched within the order (Kim et al. 2004a; Soltis et al. Therefore, Papaveraceae s.l. is a useful lineage to draw 2007c; Wang et al. 2009). The phylogenetic position of comparisons between major angiosperm clades such as eu- Ranunculales, between the core eudicot and grass model dicots and monocots, as well as to elucidate the emergence systems,
Recommended publications
  • Newsletter 123 May 2012
    TheTheThe Irish Garden Plant Society Newsletter Number 11123123 May 2012 The Annual General Meeting 2012 The Annual General Meeting will be held on Sat 12th May 10.00 a.m for 10.30 a.m., at Hillsborough Courthouse, The Square, Hillsborough, BT26 6AG. As always, it will be followed by a series of garden visits on Saturday & Sunday and a meal on Saturday evening. The meal will be held at 8:00pm in La Mon Hotel & Country Club, 41 Gransha Road, Comber, BT23 5RF. See the January 2012 newsletter for details of the gardens to be visited. If you haven’t already booked contact Patrick Quigley, 24 Areema Drive, Dunmurry, Belfast, BT17 0QG. tel: +44 (0) 7801 299263 [email protected] for further information. A.G. M. Agenda 1. Apologies 2. Minutes of AGM 2011 3. Matters arising 4. Chairman’s report 5. Treasurer’s report 6. Election of Committee Members 7. Any other business Front cover : Solanum crispum ‘Glasnevin’. Photograph : Pearse Rowe In this issue 2 Editorial 3 Southern Climbers for Northern Walls by John Joe Costin 11 Worth a Read by Paddy Tobin 14 The Palm House, a review by Mary Bradshaw 16 Cheers to Chiltern Seeds and to the Sole Survivor of Seed Project 1997/98 by Michael Kelleher 17 Seed Distribution Report 2011 and 2012 by Stephen Butler 19 Regional Reports 28 Spring at Kilmacurragh by Seamus O’Brien 37 Propagation of Arbutus by Kevin Line 41 Tulipa ‘Molly Bloom’ - an new Tulip for 2012 1 Editorial Spring time and new plants are synonymous, and as Christopher Lloyd said in Garden Flowers from Seed, seed sowing is “one of life’s big thrills”.
    [Show full text]
  • Plant List 2016
    Established 1990 PLANT LIST 2016 European mail order website www.crug-farm.co.uk CRÛG FARM PLANTS • 2016 Welcome to our 2016 list hope we can tempt you with plenty of our old favourites as well as some exciting new plants that we have searched out on our travels. There has been little chance of us standing still with what has been going on here in 2015. The year started well with the birth of our sixth grandchild. January into February had Sue and I in Colombia for our first winter/early spring expedition. It was exhilarating, we were able to travel much further afield than we had previously, as the mountainous areas become safer to travel. We are looking forward to working ever closer with the Colombian institutes, such as the Medellin Botanic Gardens whom we met up with. Consequently we were absent from the RHS February Show at Vincent Square. We are finding it increasingly expensive participating in the London shows, while re-branding the RHS February Show as a potato event hardly encourages our type of customer base to visit. A long standing speaking engagement and a last minute change of date, meant that we missed going to Fota near Cork last spring, no such problem this coming year. We were pleasantly surprised at the level of interest at the Trgrehan Garden Rare Plant Fair, in Cornwall. Hopefully this will become an annual event for us, as well as the Cornwall Garden Society show in April. Poor Sue went through the wars having to have a rush hysterectomy in June, after some timely results revealed future risks.
    [Show full text]
  • Project: 2003-NPS-305-P Seed Fates of Arctomecon Californica By
    Project: 2003-NPS-305-P Seed Fates of Arctomecon californica By: Laura Megill & Dr. Lawrence Walker University of Nevada, Las Vegas Final Report Clark County Multiple Species Habitat Conservation Plan June 30, 2006 ** A copy of the finished thesis and subsequent publications will be sent upon completion. INTRODUCTION The Las Vegas bearpoppy, Arctomecon californica Torr. and Frem., is a rare herbaceous perennial endemic to the Mojave Desert that mainly inhabits gypsum outcrops. The Las Vegas bearpoppy is listed as Critically Endangered by the State of Nevada (Mistretta et al., 1995). A vital aspect of the life history of the bearpoppy that has been overlooked in previous studies is the fate of seeds. The unknown fate of the bearpoppy seeds provides an information gap in conservation management plans that is critical to plan mitigation measures (Powell and Walker 2003). Therefore, the objective of this research project is to determine the seed fates of the Las Vegas bearpoppy to further promote conservation efforts. The scope of this project follows seed fates through seed production, seed dispersal, and granivory to incorporation within the soil seed bank. In addition, seed viability testing will occur throughout the project to substantiate seed fate data. The research data will be collected from four study areas with an additional area added for soil seed bank studies traversing the natural range of the Las Vegas bearpoppy over a two-year consecutive period. The following hypotheses will be addressed in this research study: (1) Seed production corresponds to capsule size and number of rosettes. (2) Primary seed dispersal declines leptokurtically from the source.
    [Show full text]
  • Habitat Conservation Plan Washington County, Utah
    Habitat Conservation Plan Washington County, Utah Submitted by: Washington County Commission 197 East Tabernacle St. George, Utah 84770 (801) 634-5700 Submitted to: U.S. Fish and Wildlife Service Utah Field Office Lincoln Plaza, Suite 404 145 East 1300 South Salt Lake City, Utah 84115 801-524-5001 Prepared by: Washington County HCP Steering Committee and SWCA, Inc. Environmental Consultants 114 North San Francisco Street, Suite 100 Flagstaff, Arizona 86001 (800) 224-4234 December 1995 TABLE OF CONTENTS EXECUTIVE SUMMARY............................................................................................................ ix CHAPTER 1.0 INTRODUCTION .................................................................................................1 1.1 THE NEED FOR AN HCP IN WASHINGTON COUNTY ...................................1 1.2 PLAN AREA AND PROPOSED ACTIVITIES .....................................................2 1.3 THE HCP PLANNING PROCESS .........................................................................2 1.4 COORDINATION WITH THE DESERT TORTOISE RECOVERY PLAN .........9 1.5 HCP GOALS AND OBJECTIVES .........................................................................9 1.6 PROPOSED PROGRAM ......................................................................................10 1.7 IS THE DESERT TORTOISE NATIVE TO THE ST. GEORGE AREA? ..........11 CHAPTER 2.0 BIOLOGICAL PROGRAM ................................................................................13 2.1 SPECIES OF CONCERN ......................................................................................13
    [Show full text]
  • Phylogeography of a Tertiary Relict Plant, Meconopsis Cambrica (Papaveraceae), Implies the Existence of Northern Refugia for a Temperate Herb
    Article (refereed) - postprint Valtueña, Francisco J.; Preston, Chris D.; Kadereit, Joachim W. 2012 Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21 (6). 1423-1437. 10.1111/j.1365- 294X.2012.05473.x Copyright © 2012 Blackwell Publishing Ltd. This version available http://nora.nerc.ac.uk/17105/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Phylogeography of a Tertiary relict plant, Meconopsis cambrica 2 (Papaveraceae), implies the existence of northern refugia for a 3 temperate herb 4 Francisco J. Valtueña*†, Chris D. Preston‡ and Joachim W. Kadereit† 5 *Área de Botánica, Facultad deCiencias, Universidad de Extremadura, Avda. de Elvas, s.n.
    [Show full text]
  • Argemone Mexicana L.)
    Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.11 No.1, Issue of January 15, 2008 © 2008 by Pontificia Universidad Católica de Valparaíso -- Chile Received March 21, 2007 / Accepted Mayo 20, 2007 DOI: 10.2225/vol11-issue1-fulltext-3 SHORT COMMUNICATION Agrobacterium-mediated transient transformation of Mexican prickly poppy (Argemone mexicana L.) Gregorio Godoy-Hernández* Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Elidé Avilés-Berzunza Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Mildred Carrillo-Pech Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Felipe Vázquez-Flota Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Website: http://www.cicy.mx Financial support: Consejo Nacional de Ciencia y Tecnología (CONACYT) from México (Grant No. 28643-B). Keywords: Argemone mexicana, β-glucuronidase, benzylisoquinoline alkaloids, genetic transformation, neomycin phosphotransferase II.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
    In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • The Developmental and Genetic Bases of Apetaly in Bocconia Frutescens
    Arango‑Ocampo et al. EvoDevo (2016) 7:16 DOI 10.1186/s13227-016-0054-6 EvoDevo RESEARCH Open Access The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae) Cristina Arango‑Ocampo1, Favio González2, Juan Fernando Alzate3 and Natalia Pabón‑Mora1* Abstract Background: Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; how‑ ever, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results: We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci- specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes inB. frute- scens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions: Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans.
    [Show full text]
  • Botanischer Garten Der Universität Tübingen
    Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22
    [Show full text]
  • Adlumia Fungosa (Aiton) Greene Ex Britton
    Adlumia fungosa (Aiton) Greene ex Britton Common Names: Allegheny vine, Climbing Fumitory, Mountain-fringe (1, 3) Etymology: Adlumia for John Adlum, amateur botanist of the late 18th century and early 19th century; fungosa: from the Greek ‘fung’, meaning spongy or mushroom-like (5, 7). Botanical synonyms: Fumaria fungosa (Aiton), Bicuculla fungosa (Aiton) Kuntze, Adlumia cirrhosa (Raf.), Fumaria recta (Michx.), Bicuculla fungosa (Aiton), Bicuculla fumarioides (Borkh.), Corydalis fungosa (Aiton) (3, 11, 14). FAMILY: Papaveraceae (the poppy family) Quick Notable Features: ¬ Spongy, tube-like flowers, each individual flower lasting all summer ¬ Prehensile, climbing leaves ¬ Short, often un-noticeable petiole Plant Height: A. fungosa can climb to 4m, but averages 3m (4, 8). Subspecies/varieties: none found (3) Most Likely Confused with: Rosa setigera and Rubus laciniatus, as well as other Fumarioideae species, some trifoliate Fabaceae (most notably Amphicarpaea bracteata and Lespedeza procumbens), and Ranunculaceae climbers like Clematis virginiana and C. occidentalis. Habitat Preference: A. fungosa prefers full sun, although it can tolerate shade. It is often found in moist or freshly burned woods, as well on rocky slopes and slightly acidic soils. It prefers sites protected from wind (8, 12). It was reported in 1999 in Great Smoky Mountains National Park growing on Betula lenta along streams at 2670m elevation (21). Geographic Distribution in Michigan: Allegheny-vine is found sporadically in Michigan 1 (in a geographic sense; habitat analysis may provide some explanation as to why). It is found in the following counties: Berrien, Charlevoix, Chippewa, Delta, Hillsdale, Ingham, Ishpeming, Kent, Luce, Mackinack, Menominee, Muskegon, Ottawa, Presque Isle, St. Clair, Van Buren, Washtenaw, and Wayne (2).
    [Show full text]