Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone Electrophoresis

Total Page:16

File Type:pdf, Size:1020Kb

Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone Electrophoresis separations Article Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone Electrophoresis Feng Luan *, Li Li Tang, Xuan Xuan Chen and Hui Tao Liu College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; [email protected] (L.L.T.); [email protected] (X.X.C.); [email protected] (H.T.L.) * Correspondence: fl[email protected]; Tel.: +86-535-6902063 Academic Editor: Doo Soo Chung Received: 29 October 2016; Accepted: 20 December 2016; Published: 1 January 2017 Abstract: Coffee is a favorite and beverage in Western countries that is consumed daily. In the present study, capillary zone electrophoresis (CE) was applied for the separation and quantification of three isoflavones including daidzein, genistein and formononetin in coffee. Extraction of isoflavones from the coffee sample was carried out by extraction and purification process using ether after the acid hydrolysis with the antioxidant butylated hydroxy-toluene (BHT). The experimental conditions of the CE separation method were: 20 mmol/L Na2HPO4 buffer solution, 25 kV applied voltage, 3 s hydrodynamic injection at 30 mbar, and UV detection at 254 nm. The results show that the three compounds can be tested within 10 min with a linearity of 0.5–50 µg/mL for all three compounds. The limits of detection were 0.0642, 0.134, and 0.0825 µg/mL for daidzein, formononetin and genistein, respectively. The corresponding average recovery was 99.39% (Relative Standard Detection (RSD) = 1.76%), 98.71% (RSD = 2.11%) and 97.37% (RSD = 3.74%). Keywords: capillary zone electrophoresis (CE); daidzein; genistein; formononetin; acid hydrolysis 1. Introduction Phytoestrogens (PEs), also called “dietary estrogens”, are a group of natural, non-steroidal, estrogen-like compounds found in a wide variety of plants consumed by humans [1]. Currently, four different groups of plant phenolics are considered PEs, including isoflavones and lignans, coumestanes, flavonoids and stilbenes. Other less-investigated compounds include prenylflavonoids, flavones, flavans and phytosterol esters [2]. These compounds are similar to 17β-estradiol in structure and function [3]. They have a dual-directional regulation function in the human body, meaning both anti-estrogen activity and estrogenic activity [4]. Such compounds have good curative effects for the treatment of cardiovascular disease, breast cancer, Alzheimer’s disease, neurodegenerative disorders, and osteoporosis, etc. [5–8]. They can also be used for the treatment of the symptoms of menopause [9]. PEs are common in nature and have many pharmacological activities [9,10]. It has been reported that the daily take of PEs for menopausal women in the Caucasus region of the United States is no more than one milligram [11]. There are some foods that contain PEs including: soybeans and soy products, tempeh, linseeds, sesame seeds, wheat berries, fenugreek, oats, barley, beans, lentils, yams, rice, alfalfa, mung beans, apples, carrots, pomegranates [12], wheat germ, rice bran, lupin, kudzu, coffee, licorice root, mint, ginseng, hops [13], bourbon, beer [14], fennel and anise [15]. As we know, the content of PEs is different between various foods. In addition, it may also occur in the same kinds of foods, such as soy beverages and tofu, since they are made of different kinds of raw materials or using different processing methods [16]. It has been proved that phytoestrogen-rich diets include soybeans and soybean products, followed by legumes, nuts, oilseeds, fruits and vegetables [17]. As is well known, there is a phenomenon Separations 2017, 4, 1; doi:10.3390/separations4010001 www.mdpi.com/journal/separations Separations 2017, 4, 1 2 of 8 It has been proved that phytoestrogen-rich diets include soybeans and soybean products, followedSeparations 2017by , 4legumes,, 1 nuts, oilseeds, fruits and vegetables [17]. As is well known, there 2is of a 8 phenomenon where people consume less soy and its derivatives in Western countries than in whereEastern people ones [ consume18]. However, less soy coffee and is its a derivativesfavorite beverage in Western in Western countries countries than in that Eastern is consumed ones [18]. daily;However, for example, coffee is a in favorite the United beverage States, in Western29 September countries is celebrated that is consumed as “Nat daily;ional forCoffee example, Day” in [19 the]. Thus,United it States,is necessary 29 September to study is the celebrated content of as isoflavones “National Coffee in coffee. Day” [19]. Thus, it is necessary to study the contentSome researchers of isoflavones have in coffee.been studied the phytoestrogens in plants [20]. The methods used for the determinationSome researchers of phytoestrogens have been studied in theplants phytoestrogens are GC-MS in[21,22 plants], HPLC [20]. The [17,23 methods–31], and used LC for-MS the [32,33determination]. It should of be phytoestrogens noted that HPLC in plants separation are GC-MS is generally [21,22 carried], HPLC out [17 on,23 reversed–31], and-phaseLC-MS columns [32,33]. usingIt should the bemethanol noted that of acetonitrile HPLC separation and water is generally containing carried small out amounts on reversed-phase of acid as a columns modifier using [29]. theAs farmethanol as we ofknow, acetonitrile few studies and water have containing been reported small amounts using capillary of acid as zone a modifier electrophoresis [29]. As far (CE) as we in know, the analysisfew studies of haveisoflavones. been reported Aramendia using et capillary al. [34] zone separated electrophoresis and identified (CE) in several the analysis isoflavones of isoflavones. using AramendiaCE-ESI/MS etin al. negative [34] separated ion mode and identifiedfrom standard several samples. isoflavones García using-Villalba CE-ESI/MS et al. in [35 negative] used ioncapillary mode electrophoresisfrom standard samples.–time-of-flight García-Villalba-mass spectrometry et al. [35] used to compare capillary the electrophoresis–time-of-flight-mass metabolic profiles of conventional andspectrometry genetically to comparemodified the soybeans, metabolic including profiles of isoflavones, conventional amino and genetically acids, carboxylic modified acids soybeans, and peptides.including isoflavones,In the above amino references, acids, carboxylicseparation acids was andcarried peptides. out in In positive the above mode references, at pH separation9–9.5 and wasdetection carried was out achieved in positive in modenegative at pHionization 9–9.5 and mode, detection but quantification was achieved inwas negative not reported. ionization Also, mode, the processbut quantification is somewhat was time not- reported.consuming Also,, though the process it is useful is somewhat and effective. time-consuming, though it is useful and effective.From the works reported so far, one can see that the quantitative determination of isoflavones in plantFroms is themostly works done reported by HPLC so far, combined one can with see thatacid the hydrolysis quantitative or alcohol determination extraction. of In isoflavones addition, thein plants separation is mostly system done is acid by HPLCic. The combined HPLC method with aciduses hydrolysis a large amount or alcohol of organic extraction. solvent In in addition, mobile phasethe separation and requires system a long is acidic. separation The HPLC time. method The acid uses hydrolysis a large amount and ethanol of organic extraction solvent are in simple mobile; however,phase and the requires process a longcannot separation transform time. glycosides The acid into hydrolysis aglycone. and Also, ethanol the acid extraction hydrolysis are process simple; mayhowever, lead theto processthe samples cannot contain transforming glycosidesa large number into aglycone. of complex Also,es theand acid it is hydrolysis difficult processto separate may substanceslead to the samplesafter they containing are treated a by large acid number hydrolysis. of complexes and it is difficult to separate substances afterThe they aim are treatedof this bywork acid was hydrolysis. to develop a simple, efficient and sensitive CE method, as an alternativeThe aim to ofother this workmethods was, tofor develop the quantitative a simple, efficientanalysis andof three sensitive isoflavones, CE method, including as an alternative daidzein, genisteinto other methods, and formononetin for the quantitative (their chemical analysis structures of three isoflavones,are shown in including Figure 1 daidzein,) in coffee. genistein For this, andwe improvedformononetin the (theirextraction chemical method structures of isoflavones are shown from in Figure the coffee1) in coffee. sample For with this, an we extracti improvedon and the purifextractionication method process of using isoflavones ether frominstead the of coffee ethanol sample after with the anprocess extraction of acid and hydrolysis purification with process the antioxidantusing ether butylated instead of hydroxy ethanol- aftertoluene the (BHT). process The of acidproposed hydrolysis method with was the successfully antioxidant applied butylated to thehydroxy-toluene determination (BHT).of three The isoflavones proposed in methodcommercially was successfully available coffee applied samples. to the To determination our knowledge, of therethree isoflavonesare no methods in commercially that describe available the quantification coffee samples. of isoflavones To our knowledge, in coffee there samples are no using methods the singlethat describe CE. Also, the the quantification sample preparation
Recommended publications
  • Content and Composition of Isoflavonoids in Mature Or Immature
    394 Journal of Health Science, 47(4) 394–406 (2001) Content and Composition of tivities1) and reported to be protective against can- cer, cardiovascular diseases and osteoporosis.3–9) Isoflavonoids in Mature or Much research has been reported about the content Immature Beans and Bean of isoflavonoids in soybeans and soybean-derived processed foods.10–23) In contrast, there are few re- Sprouts Consumed in Japan ports about the isoflavonoid content in beans other than soybeans.11,12,18,23) Yumiko Nakamura,* Akiko Kaihara, Japanese people are reported to ingest Kimihiko Yoshii, Yukari Tsumura, isoflavonoids mainly through the consumption of Susumu Ishimitsu, and Yasuhide Tonogai soybeans and its derived processed foods.20) Re- cently, we estimated that the Japanese daily intake Division of Food Chemistry, National Institute of Health Sci- of isoflavonoids from soybeans and soybean-based ences, Osaka Branch, 1–1–43 Hoenzaka, Chuo-ku, Osaka 540– processed foods is 27.80 mg per day (daidzein 0006, Japan (Received January 9, 2001; Accepted April 6, 2001) 12.02 mg, glycitein 2.30 mg and genistein 13.48 mg).24) However, isoflavonoid intake from the The content of 9 types of isoflavonoids (daidzein, consumption of immature beans, sprouts and beans glycitein, genistein, formononetin, biochanin A, other than soybeans has not been elucidated. Here coumestrol, daidzin, glycitin and genistin) in 34 do- we have measured the content of isoflavonoids in mestic or imported raw beans including soybeans, 7 mature and immature beans and bean sprouts con- immature beans and 5 bean sprouts consumed in Ja- sumed in Japan, and have compared the content and pan were systematically analyzed.
    [Show full text]
  • Interpreting Sources and Endocrine Active Components of Trace Organic Contaminant Mixtures in Minnesota Lakes
    INTERPRETING SOURCES AND ENDOCRINE ACTIVE COMPONENTS OF TRACE ORGANIC CONTAMINANT MIXTURES IN MINNESOTA LAKES by Meaghan E. Guyader © Copyright by Meaghan E. Guyader, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil and Environmental Engineering). Golden, Colorado Date _____________________________ Signed: _____________________________ Meaghan E. Guyader Signed: _____________________________ Dr. Christopher P. Higgins Thesis Advisor Golden, Colorado Date _____________________________ Signed: _____________________________ Dr. Terri S. Hogue Professor and Department Head Department of Civil and Environmental Engineering ii ABSTRACT On-site wastewater treatment systems (OWTSs) are a suspected source of widespread trace organic contaminant (TOrC) occurrence in Minnesota lakes. TOrCs are a diverse set of synthetic and natural chemicals regularly used as cleaning agents, personal care products, medicinal substances, herbicides and pesticides, and foods or flavorings. Wastewater streams are known to concentrate TOrC discharges to the environment, particularly accumulating these chemicals at outfalls from centralized wastewater treatment plants. Fish inhabiting these effluent dominated environments are also known to display intersex qualities. Concurrent evidence of this phenomenon, known as endocrine disruption, in Minnesota lake fish drives hypotheses that OWTSs, the primary form of wastewater treatment in shoreline residences, may contribute to TOrC occurrence and the endocrine activity in these water bodies. The causative agents specific to fish in this region remain poorly understood. The objective of this dissertation was to investigate OWTSs as sources of TOrCs in Minnesota lakes, and TOrCs as potential causative agents for endocrine disruption in resident fish.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Study Protocol and Statistical Analysis Plan
    Confidential Clinical study protocol number: J1228 Page 1 Version Date: May 7, 2018 IRB study Number: NA_00067315 A Trial of maintenance Rituximab with mTor inhibition after High-dose Consolidative Therapy in CD20+, B-cell Lymphomas, Gray Zone Lymphoma, and Hodgkin’s Lymphoma Principal Investigator: Douglas E. Gladstone, MD The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins 1650 Orleans Street, CRBI-287 Baltimore, MD 21287 Phone: 410-955-8781 Fax: 410-614-1005 Email: [email protected] IRB Protocol Number: NA_00067315 Study Number: J1228 IND Number: EXEMPT Novartis Protocol Number: CRAD001NUS157T Version: May 7, 2018 Co-Investigators: Jonathan Powell 1650 Orleans Street, CRBI-443 Phone: 410-502-7887 Fax: 443-287-4653 Email: [email protected] Richard Jones 1650 Orleans Street, CRBI-244 Phone: 410-955-2006 Fax: 410-614-7279 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 2 Version Date: May 7, 2018 IRB study Number: NA_00067315 Satish Shanbhag Johns Hopkins Bayview Medical Center 301 Building, Suite 4500 4940 Eastern Ave Phone: 410-550-4061 Fax: 410-550-5445 Email: [email protected] Statisticians: Gary Rosner Phone: 410-955-4884 Email: [email protected] Marianna Zahurak Phone: 410-955-4219 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 3 Version Date: May 7, 2018 IRB study Number: NA_00067315 Table of contents Table of contents ......................................................................................................................... 3 List of abbreviations
    [Show full text]
  • What Are Soy Isoflavones? Figure 2: Soy Isoflavones Reduced Plasma Isoprostanes Soy Isoflavones Are a Class of Natural Bioactive Compounds in Soybeans
    TECHNICAL REPORT Purina Veterinary Diets® OM Overweight Management® brand canine dry formula and the Beneficial Role of Isoflavones Introduction Approximately 35% of adult dogs in the U.S. are overweight or obese1. A markedly greater incidence of overweight and obesity was observed in neutered male (59% higher) and female dogs (40% higher)1. Chronic obesity can increase the risk of, or complications from, several chronic diseases including diabetes, hypertension, pulmonary and cardiovascular disease, and degenerative joint disease2. Obesity produces chronic, mild inflammation and increases oxidative stress, which, in turn, contributes to the development of the above-mentioned chronic diseases.3,4 Therefore, reducing obesity and oxidative stress can promote a long life span and improved quality of life in dogs. What are Soy Isoflavones? Figure 2: Soy Isoflavones Reduced Plasma Isoprostanes Soy isoflavones are a class of natural bioactive compounds in soybeans. Natural a Marker of Oxidative Stress soy isoflavones include three chemical compounds: daidzein, genistein, 5 Plasma Isoprostanes (ng/ml) and glycitein. Many health benefits have been associated with regular consumption of soy products. In humans, soy has been found to reduce the 4 risk of cardiovascular disease and certain types of cancer (breast and prostate cancer); relieve a number of problems in post menopausal women including 3 hot flashes, osteoporosis, and decline in cognitive function; reduce cholesterol and triglycerides in plasma; improve symptoms of hypertension; and reduce 2 abdominal fat accumulation.5,6,7 1 Why Did Nestlé Purina 0 Control Isoflavones* Choose Isoflavones? *P<0.01 for Control vs. Isoflavones Soy isoflavones provide a number of benefits for managing dogs with obesity, and reducing rebound effects after weight loss.
    [Show full text]
  • Applications of in Silico Methods to Analyze the Toxicity and Estrogen T Receptor-Mediated Properties of Plant-Derived Phytochemicals ∗ K
    Food and Chemical Toxicology 125 (2019) 361–369 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Applications of in silico methods to analyze the toxicity and estrogen T receptor-mediated properties of plant-derived phytochemicals ∗ K. Kranthi Kumara, P. Yugandharb, B. Uma Devia, T. Siva Kumara, N. Savithrammab, P. Neerajaa, a Department of Zoology, Sri Venkateswara University, Tirupati, 517502, India b Department of Botany, Sri Venkateswara University, Tirupati, 517502, India ARTICLE INFO ABSTRACT Keywords: A myriad of phytochemicals may have potential to lead toxicity and endocrine disruption effects by interfering Phytochemicals with nuclear hormone receptors. In this examination, the toxicity and estrogen receptor−binding abilities of a QSAR modeling set of 2826 phytochemicals were evaluated. The endpoints mutagenicity, carcinogenicity (both CAESAR and ISS Toxicity models), developmental toxicity, skin sensitization and estrogen receptor relative binding affinity (ER_RBA) Nuclear hormone receptor binding were studied using the VEGA QSAR modeling package. Alongside the predictions, models were providing pos- Self−Organizing maps sible information for applicability domains and most similar compounds as similarity sets from their training Clustering and classification schemes sets. This information was subjected to perform the clustering and classification of chemicals using Self−Organizing Maps. The identified clusters and their respective indicators were considered as potential hotspot structures for the specified data set analysis. Molecular screening interpretations of models wereex- hibited accurate predictions. Moreover, the indication sets were defined significant clusters and cluster in- dicators with probable prediction labels (precision). Accordingly, developed QSAR models showed good pre- dictive abilities and robustness, which observed from applicability domains, representation spaces, clustering and classification schemes.
    [Show full text]
  • Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves
    UC San Diego UC San Diego Previously Published Works Title Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Permalink https://escholarship.org/uc/item/5pw0t3dx Journal Metabolites, 4(3) ISSN 2218-1989 Authors Murakami, Shinichiro Nakata, Ryu Aboshi, Takako et al. Publication Date 2014-07-04 DOI 10.3390/metabo4030532 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Metabolites 2014, 4, 532-546; doi:10.3390/metabo4030532 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Article Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves Shinichiro Murakami 1, Ryu Nakata 1, Takako Aboshi 1, Naoko Yoshinaga 1, Masayoshi Teraishi 1, Yutaka Okumoto 1, Atsushi Ishihara 3, Hironobu Morisaka 1, Alisa Huffaker 2, Eric A Schmelz 2 and Naoki Mori 1,* 1 Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan; E-Mails: [email protected] (S.M.); [email protected] (R.N.); [email protected] (T.A.); [email protected] (N.Y.); [email protected] (M.T.); [email protected] (Y.O.); [email protected] (H.M.) 2 Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA; E-Mails: [email protected] (A.H.); [email protected] (E.A.S.) 3 Department of Agriculture, Tottori University, Koyama-machi 4-101, Tottori 680-8550, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-75-753-6307.
    [Show full text]
  • Daidzein and Genistein Content of Cereals
    European Journal of Clinical Nutrition (2002) 56, 961–966 ß 2002 Nature Publishing Group All rights reserved 0954–3007/02 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION Daidzein and genistein content of cereals J Liggins1, A Mulligan1,2, S Runswick1 and SA Bingham1,2* 1Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge, UK; and 2European Prospective Investigation of Cancer, University of Cambridge, Cambridge, UK Objective: To analyse 75 cereals and three soy flours commonly eaten in Europe for the phytoestrogens daidzein and genistein. Design: The phytoestrogens daidzein and genistein were extracted from dried foods, and the two isoflavones quantified after hydrolytic removal of any conjugated carbohydrate. Completeness of extraction and any procedural losses of the isoflavones 0 0 were accounted for using synthetic daidzin (7-O-glucosyl-4 -hydroxyisoflavone) and genistin (7-O-glucosyl-4 5-dihydroxyiso- flavone) as internal standards. Setting: Foods from the Cambridge UK area were purchased, prepared for eating, which included cooking if necessary, and freeze dried. Three stock soy flours were also analysed. Results: Eighteen of the foods assayed contained trace or no detectable daidzein or genistein. The soy flours were rich sources, containing 1639 – 2117 mg=kg. The concentration of the two isoflavones in the remaining foods ranged from 33 to 11 873 mg=kg. Conclusion: These analyses will supply useful information to investigators determining the intake of phytoestrogens in cereal products in order to relate intakes to potential biological activities. Sponsorship: This work was supported by the United Kingdom Medical Research Council, Ministry of Agriculture Fisheries and Food (contract FS2034) and the United States of America Army (contract DAMD 17-97-1-7028).
    [Show full text]
  • Mindy Goldman, MD Clinical Professor Dept
    Managing Menopause Medically and Naturally Mindy Goldman, MD Clinical Professor Dept. of Ob/Gyn and Reproductive Sciences Director, Women’s Cancer Care Program, UCSF Breast Care Center and Women’s Health University of California, San Francisco I have nothing to disclose –Mindy Goldman, MD CASE STUDY 50 yr. old G2P2 peri-menopausal woman presents with complaints of significant night sweats interfering with her ability to sleep. She has mild hot flashes during the day. She has never had a bone mineral density test but her mother had a hip fracture at age 62 due to osteoporosis. Her 46 yr. old sister was diagnosed with breast cancer at age 43, treated with lumpectomy and radiation and currently is doing well. There is no other family history of cancer. Questions 1. Would you offer her MHT? 2. If yes, how long would you continue it? 3. If no, what would you offer for alternative treatments? 4. Would your treatment differ if you knew she had underlying heart disease? Is it safe? How long can I take it? What about Mymy Bones?bones? Will it protect my heart? MHT - 2015 What about my brain? Will I get breast cancer? What about my hot flashes? Menopausal Symptoms Hot flashes Night sweats Sleep disturbances Vaginal dryness/Sexual dysfunction Mood disturbances How to Treat Menopausal Symptoms Hormone therapy Alternatives to hormones Complementary and Integrative Techniques Prior to Women’s Health Initiative Hormone therapy primary treatment of menopausal hot flashes Few women would continue hormones past one year By 1990’s well known
    [Show full text]
  • Focus on Formononetin: Anticancer Potential and Molecular Targets
    Review Focus on Formononetin: Anticancer Potential and Molecular Targets Samantha Kah Ling Ong 1, Muthu K. Shanmugam 1, Lu Fan 1, Sarah E. Fraser 3, Frank Arfuso 4, Kwang Seok Ahn 2,*, Gautam Sethi 1,* and Anupam Bishayee 3,* 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; [email protected] (S.K.L.O.); [email protected] (M.K.S.); [email protected] (L.F.) 2 Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea 3 Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; [email protected] 4 Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; [email protected] * Correspondence: [email protected] (K.S.A.); [email protected] (G.S.); [email protected] or [email protected] (A.B.); Tel.: +82-2-961-2316 (K.S.A.); +65-6516-3267 (G.S.); +1-(941)-782-5950 (A.B.) Fax: +65-6873-7690 (G.S.) Received: 22 March 2019; Accepted: 28 April 2019; Published: 1 May 2019 Abstract: Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin’s antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer’s disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers.
    [Show full text]
  • Contemporary Approaches for Managing Menopause Symptoms
    Menopause 2017 Guidelines: Looking at Special Populations and Building on Existing Practice Patricia Geraghty, MSN, FNP-BC, WHNP Disclosures • Speaker Bureau • AbbVie • Therapeutics MD • Advisory Board • AbbVie (endometriosis) • Sharecare Inc. • Procedure Proctor • Bayer (Contraception) • Off label discussion will be included and identified in this discussion. Objectives • Identify the benefits and risks of estrogen, progesterone, and non-hormonal pharmacological management of menopause symptoms based on dosage, route of administration, pharmacokinetics, treatment population and duration of use. • Develop treatment strategies for special populations including premature ovarian insufficiency, prolonged symptoms, and women who are not candidates for estrogen. • Incorporate the NAMS 2017 Position Statement into patient counseling on the timeline of menopause symptoms and the termination of hormone therapy. Lifespan Lifespan Median 34 322 BC Aristotle describes transition Ages the Through Menopause yr JAMA. JAMA. Investigators. Initiative Health the Women's for Group Writing 2002;288(3):321 - 333. doi:10.1001/jama.288.3.321 Treated with plants s/a 1800’s cohosh, cannabis, opium 1821 French physician DeGardanne 53 lifespan lifespan calls it “Menopause” Adult - 1900’s Deficiency disease 55 1942 Premarin” copyright yr 1960’s “Forever Feminine” by Robert Wilson MD 1980’s-1990’s “Politics of Menopause” by Frances McCrea 2002 WHI- First large randomized control trial “My periods are different. Is This Menopause?” • Random cycling, sometimes early, sometimes late. • Flow variable with prodromal spotting, a long taper, or stopping and starting. • She has a day of very heavy flow. • 77% have duration 10+ days, heavy bleeding 3+ days, spotting 6+ days Paramsothy P, et al. BJOG. 2014 Nov;121(12):1564-73.
    [Show full text]
  • Ijoc 2014111915334185.Pdf
    International Journal of Organic Chemistry, 2014, 4, 236-246 Published Online December 2014 in SciRes. http://www.scirp.org/journal/ijoc http://dx.doi.org/10.4236/ijoc.2014.44027 Process for the Preparation of Chromones, Isoflavones and Homoisoflavones Using Vilsmeier Reagent Generated from Phthaloyl Dichloride and DMF Santosh Kumar Yadav Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, India Email: [email protected] Received 6 September 2014; revised 21 October 2014; accepted 6 November 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Vilsmeier reagent formed from phthaloyl dichloride and DMF was found to be very effective for converting 2-hydroxyacetophenones, deoxybenzoins and dihydrochalcones into corresponding chromones, isoflavones and homoisoflavones with excellent yield. This method offers significant advantages such as efficiency and mild reaction conditions with shorter reaction time. Keywords Phthaloyl Dichloride, Dimethylformamide, Chromones, Isoflavones, Homoisoflavones, BF3∙Et2O, Vilsmeier Reagent 1. Introduction In recent years, scientific interest towards chromones (2), isoflavones (9) and homoisoflavones (10) has in- creased. It is due to the limited distribution of these compounds in the plant kingdom and the possible health ef- fect these compounds exhibit. The development of new methodologies for the synthesis of these compounds
    [Show full text]