Content and Composition of Isoflavonoids in Mature Or Immature

Total Page:16

File Type:pdf, Size:1020Kb

Content and Composition of Isoflavonoids in Mature Or Immature 394 Journal of Health Science, 47(4) 394–406 (2001) Content and Composition of tivities1) and reported to be protective against can- cer, cardiovascular diseases and osteoporosis.3–9) Isoflavonoids in Mature or Much research has been reported about the content Immature Beans and Bean of isoflavonoids in soybeans and soybean-derived processed foods.10–23) In contrast, there are few re- Sprouts Consumed in Japan ports about the isoflavonoid content in beans other than soybeans.11,12,18,23) Yumiko Nakamura,* Akiko Kaihara, Japanese people are reported to ingest Kimihiko Yoshii, Yukari Tsumura, isoflavonoids mainly through the consumption of Susumu Ishimitsu, and Yasuhide Tonogai soybeans and its derived processed foods.20) Re- cently, we estimated that the Japanese daily intake Division of Food Chemistry, National Institute of Health Sci- of isoflavonoids from soybeans and soybean-based ences, Osaka Branch, 1–1–43 Hoenzaka, Chuo-ku, Osaka 540– processed foods is 27.80 mg per day (daidzein 0006, Japan (Received January 9, 2001; Accepted April 6, 2001) 12.02 mg, glycitein 2.30 mg and genistein 13.48 mg).24) However, isoflavonoid intake from the The content of 9 types of isoflavonoids (daidzein, consumption of immature beans, sprouts and beans glycitein, genistein, formononetin, biochanin A, other than soybeans has not been elucidated. Here coumestrol, daidzin, glycitin and genistin) in 34 do- we have measured the content of isoflavonoids in mestic or imported raw beans including soybeans, 7 mature and immature beans and bean sprouts con- immature beans and 5 bean sprouts consumed in Ja- sumed in Japan, and have compared the content and pan were systematically analyzed. Each isoflavonoid composition variation between different types and was analyzed in total after acid hydrolysis to the agly- different growth stages of the beans. cone, and intact individual isoflavonoids were also analyzed without hydrolysis. After the sample clean up, daidzein, glycitein, genistein, formononetin, MATERIALS AND METHODS biochanin A, daidzin, glycitin and genistin were deter- mined by HPLC with a diode array detector and Materials —–— Genistein, formononetin and coumestrol was determined by spectrofluorimetry. The biochanin A were purchased from Extrasynthèse content and composition of isoflavonoids varied greatly (Genay, France). Daidzein, daidzin, genistin, between soybean sprouts, immature soybeans and glycitein and glycitin were from Fujicco Co., Ltd. mature beans of the same type but of different source. (Kobe, Japan). Coumestrol was obtained from Fluka Isoflavonoid content was highest in mature soybeans. The composition of isoflavonoids differed in each Chemie AG (Bucks, Switzerland). Flavone, 2,6-di- growth stage of soybeans. In other beans, the largest t-butyl-4-methylphenol (BHT) and dimethyl sulfox- content of isoflavonoids was found in mature ide (DMSO) were from Wako Pure Chemical Indus- chickpeas, but this value was less than 1/27 of the tries, Ltd. (Osaka, Japan). The chemical structures isoflavonoid content in mature soybeans. Thus, the of these isoflavonoids and flavone are shown in contribution of beans other than soybeans to the daily Fig. 1. Acetonitrile, ethanol, n-hexane and metha- intake of isoflavonoids in a Japanese diet is negligible. nol were analytical grade for high performance liq- uid chromatography (HPLC). All other reagents were Key words —–— isoflavonoid, bean, acid hydrolysis, high analytical grade. The water used was Milli-Q grade performance liquid chromatography, diode array detec- or equivalent. tion, spectrofluorometric detection A YMC-pack ODS-AM-303 column (4.6 mm i.d. × 250 mm, 5 µm particle size) was purchased INTRODUCTION from YMC Co., Ltd. (Kyoto, Japan). Mini-cartridge R column Sep-pak plus C18 cartridges were obtained Isoflavonoids, which are found in legumes such from Waters Corporation (Milford, MA, U.S.A.). as soybeans,1,2) have both sterile and estrogenic ac- The domestic and imported mature beans, im- mature beans and sprouts that we analyzed are foods *To whom correspondence should be addressed: Division of commonly consumed in Japan. The imported ma- Food Chemistry, National Institute of Health Sciences, Osaka ture beans were obtained at a port in Hyogo Prefec- Branch, 1–1–43 Hoenzaka, Chuo-ku, Osaka 540–0006, Japan. ture and others were purchased in retail stores in Tel.: +81-6-6941-1533; Fax: +81-6-6942-0716; E-mail: [email protected] Osaka Prefecture. No. 4 395 Fig. 1. Chemical Structures of 9 Isoflavonoids and Flavone (Internal Standard) Instruments —–— A Shimadu LC-10 series amount of DMSO and diluted with methanol to form equipped with binary gradient pump LC-10AD, 10 ml of stock solutions (547–1319 µg/ml). An ap- 100 µl injection loop, autosampler SIL-10A, column propriate amount of each isoflavonoid stock solu- oven CTO-10A set at 40°C, diode array detector tion was then diluted with methanol to make (DAD) SPD-M10AVP, fluorospecrometric detector isoflavonoid standard solutions. Flavone stock so- RF-10A and system controller SCL-10A (Kyoto, lution was diluted with methanol 5 times to prepare Japan) was used for isoflavonoid analysis. a 210 µg/ml internal standard (IS) solution. Standard solutions —–— A pre-weighed amount of Extraction —–— Edible portions of the bean samples each isoflavonoid standard was dissolved in a small were analyzed. Intact individual isoflavonoids were 396 Vol. 47 (2001) analyzed without hydrolysis, and the total content B: 0% (0 min) → 20% (5 min) → 100% (50–60 min) of each isoflavonoid was analyzed as the aglycone → 0% (61 min); flow rate, 1.0 ml/min; DAD moni- after acid hydrolysis by the method of Franke et al.11) toring wavelength, 260 nm for daidzein, daidzin, with a previously described modification.24) Each genistein, genistin, glycitein, glycitin, biochanin A, analysis was performed in triplicate. For the analy- formononetin, 280 nm for flavone, 343 nm for sis of peanuts, lipids were removed before coumestrol; spectrofluorometric detector for isoflavonoid analysis by extraction with 50 ml of n- coumestrol, excitation and emission wavelength, hexane overnight at an ambient temperature. 344 nm and 413 nm; injection volume, 10 µl. (A) Intact isoflavonoids (sample solution A): Recovery Tests —–— A recovery test was performed Ground mature bean powder (1.0 g), homogenized for mature soybean #1, mature kidney bean #2, im- immature beans (2.0 g) or homogenized bean sprouts mature green peas #4 and soybean sprout (moyashi) (3.0 g) were placed in centrifuge tubes. One ml of #1 by adding 1 ml of the appropriate concentration IS solution (flavone 210 µg) and 50 ml of 80% of the isoflavonoid standard solution and 1 ml of IS methanol were added to the centrifugal tubes, which solution to each sample. were then sonicated for 30 min. Isoflavonoids were extracted for 24 hours at ambient temperature, the tube was centrifuged at 1000 × g for 20 min at 5°C RESULTS AND DISCUSSION and the volume was adjusted to 50 ml with metha- nol to form sample solution A. HPLC Analysis of Standard Solution (B) Total isoflavonoids (sample solution B): The HPLC chromatogram of the standard solu- Ground mature bean powder (1.0 g), homogenized tion is shown in Fig. 2. All nine phytoestrogens and immature beans (2.0 g) or homogenized bean sprouts flavone could be determined individually. Previ- (3.0 g) were placed in centrifuge tubes. One ml of ously, we used STR ODS-II (4.6 mm i.d. × 250 mm, IS solution (flavone 210 µg/ml), 10 ml of 10 M HCl 5 µm particle size) column to determine iso- solution and 40 ml of ethanol containing 0.05% BHT flavonoids in soybeans and soybean-derived pro- were added to the centrifugal tube, which was then cessed foods.24) However, there is not good separa- sonicated for 30 min. Hydrolysis was carried out by tion of coumestrol from genistein or biochanin A reflux in a boiling water bath for 3 hr.11) The tube from flavone with the STR ODS-II column. There- was cooled and centrifuged at 1000 × g for 15 min fore, as some beans contain biochanin A,11) we used at 5°C, and the volume was adjusted to 50 ml with the YMC-pack ODS-AM-303 column in this study. methanol to form sample solution B. The coefficients of variations of the relative re- Clean Up (Test Solution) —–— Sample solutions A tention time and peak area of the nine isoflavonoids and B prepared above were cleaned up using Sep- and flavone (10.4–26.1 µg/ml) using DAD were R 17) pak plus C18 cartridges. One ml of each sample 0.01–0.04% and 0.41–1.15%, respectively; those of solution was diluted with 10 ml of water and ap- coumestrol using fluorospectrometric detection were R plied to a Sep-pak plus C18 cartridge column pre- 0.07% and 0.66%, respectively (data not shown). conditioned with methanol and water. The column The relative retention time (flavone set as 1.000), was washed with 20 ml of water followed by 2 ml detection limits and linear dynamic range are shown of 20% methanol, and then isoflavonoids and fla- in Table 1. The detection limits (S/N = 5) of the nine vone were eluted with exactly 2 ml of methanol to isoflavonoids and coumestrol were 44.8–260.8 ng/ml form the test solution. (0.108–0.973 nmol/ml) and 26.1 ng/ml (0.097 nmol/ HPLC Analysis —–— The content of isoflavonoids ml) by DAD and fluorospectrometric detection, re- in each test solution was determined by HPLC us- spectively. The linear dynamic ranges of the stan- ing flavone as an internal standard.11) Coumestrol dard solution were more than 1,000-fold as shown was determined by fluorospectrometry, and other in Table 1. The sensitivity of coumestrol detection isoflavonoids and flavone were determined by DAD. by fluorospectrometry was 10 times higher than by HPLC conditions were as follows.
Recommended publications
  • Interpreting Sources and Endocrine Active Components of Trace Organic Contaminant Mixtures in Minnesota Lakes
    INTERPRETING SOURCES AND ENDOCRINE ACTIVE COMPONENTS OF TRACE ORGANIC CONTAMINANT MIXTURES IN MINNESOTA LAKES by Meaghan E. Guyader © Copyright by Meaghan E. Guyader, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil and Environmental Engineering). Golden, Colorado Date _____________________________ Signed: _____________________________ Meaghan E. Guyader Signed: _____________________________ Dr. Christopher P. Higgins Thesis Advisor Golden, Colorado Date _____________________________ Signed: _____________________________ Dr. Terri S. Hogue Professor and Department Head Department of Civil and Environmental Engineering ii ABSTRACT On-site wastewater treatment systems (OWTSs) are a suspected source of widespread trace organic contaminant (TOrC) occurrence in Minnesota lakes. TOrCs are a diverse set of synthetic and natural chemicals regularly used as cleaning agents, personal care products, medicinal substances, herbicides and pesticides, and foods or flavorings. Wastewater streams are known to concentrate TOrC discharges to the environment, particularly accumulating these chemicals at outfalls from centralized wastewater treatment plants. Fish inhabiting these effluent dominated environments are also known to display intersex qualities. Concurrent evidence of this phenomenon, known as endocrine disruption, in Minnesota lake fish drives hypotheses that OWTSs, the primary form of wastewater treatment in shoreline residences, may contribute to TOrC occurrence and the endocrine activity in these water bodies. The causative agents specific to fish in this region remain poorly understood. The objective of this dissertation was to investigate OWTSs as sources of TOrCs in Minnesota lakes, and TOrCs as potential causative agents for endocrine disruption in resident fish.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Analysis of Bovine Serum Albumin Ligands from Puerariae Flos Using Ultrafiltration Combined with HPLC-MS
    Hindawi Publishing Corporation Journal of Chemistry Volume 2015, Article ID 648361, 6 pages http://dx.doi.org/10.1155/2015/648361 Research Article Analysis of Bovine Serum Albumin Ligands from Puerariae flos Using Ultrafiltration Combined with HPLC-MS Ping Tang,1,2 Shihui Si,1 and Liangliang Liu3 1 College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China 2School of Environmental Science and Engineering, Hubei Polytechnic University, Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi, Hubei 435003, China 3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China Correspondence should be addressed to Liangliang Liu; [email protected] Received 24 September 2015; Revised 26 November 2015; Accepted 30 November 2015 Academic Editor: Eulogio J. Llorent-Martinez Copyright © 2015 Ping Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rapid screening techniques for identification of active compounds from natural products are important not only for clarification of the therapeutic material basis, but also for supplying suitable chemical markers for quality control. In the present study, ultrafiltration combined with high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed and conducted to screen and identify bovine serum albumin (BSA) bound ligands from Puerariae flos. Fundamental parameters affecting the screening like incubation time, BSA concentration, pH, and temperature were studied and optimized. Under the optimum conditions, nine active compounds were identified by UV and MS data. The results indicated that this method was able to screen and identify BSA bound ligands form natural products without the need of preparative isolation techniques.
    [Show full text]
  • Changes of Phytoestrogens Daidzein, Genistein and Their Glycosides Daidzin and Genistin and Coumestrol During Processing of Soyabeans
    Czech J. Food Sci. Vol. 22, Special Issue Changes of Phytoestrogens Daidzein, Genistein and Their Glycosides Daidzin and Genistin and Coumestrol during Processing of Soyabeans J. LOJZA*, V. SCHULZOVÁ and J. HAJŠLOVÁ Department of Food Chemistry and Analysis, Institute of Chemical Technology, Prague, Czech Republic, *E-mail: [email protected] Abstract: Phytoestrogens represent biologically active compounds showing estrogenic activity similar to that of sex hormones – estrogens. Various adverse effects such as sterility, increase of females’ genitals, lost of males’ copulation activity, etc. were observed in farm animals after exposure to higher amounts of fodder containing phytoestrogens. On the other side, their presence in human diet is nowadays the object of many research stud- ies concerned with prevention of breast and prostate cancer, osteoporosis and other hormone-linked diseases by dietary intake of phytoestrogens. Soya (Glycine max) is one of the main sources of these compounds in diet. Isoflavones daidzein and genistein occurring either free or bound in glycosides are the main phytoestrogens in this food crop. Coumesterol representing coumestans is another effective phytoestrogen contained in some ed- dible plants. In the first part of our study, analytical method for determination of free and total phytoestrogens was developed and validated. Following steps are included: (i) acid hydrolysis (only for “total phytoestrogens” analysis), (ii) extraction with methanol/water mixture, (iii) SPE preconcentration; (iv) identification/quantifica- tion using HPLC/DAD/FLD. The aim of present study was to document the fate of phytoestrogens and their forms during household/industrial processing. As documented in our experiments the most dynamic changes of phytoestrogen levels occur during soyabeans sprouting.
    [Show full text]
  • Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves
    UC San Diego UC San Diego Previously Published Works Title Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Permalink https://escholarship.org/uc/item/5pw0t3dx Journal Metabolites, 4(3) ISSN 2218-1989 Authors Murakami, Shinichiro Nakata, Ryu Aboshi, Takako et al. Publication Date 2014-07-04 DOI 10.3390/metabo4030532 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Metabolites 2014, 4, 532-546; doi:10.3390/metabo4030532 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Article Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves Shinichiro Murakami 1, Ryu Nakata 1, Takako Aboshi 1, Naoko Yoshinaga 1, Masayoshi Teraishi 1, Yutaka Okumoto 1, Atsushi Ishihara 3, Hironobu Morisaka 1, Alisa Huffaker 2, Eric A Schmelz 2 and Naoki Mori 1,* 1 Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan; E-Mails: [email protected] (S.M.); [email protected] (R.N.); [email protected] (T.A.); [email protected] (N.Y.); [email protected] (M.T.); [email protected] (Y.O.); [email protected] (H.M.) 2 Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA; E-Mails: [email protected] (A.H.); [email protected] (E.A.S.) 3 Department of Agriculture, Tottori University, Koyama-machi 4-101, Tottori 680-8550, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-75-753-6307.
    [Show full text]
  • Daidzein and Genistein Content of Cereals
    European Journal of Clinical Nutrition (2002) 56, 961–966 ß 2002 Nature Publishing Group All rights reserved 0954–3007/02 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION Daidzein and genistein content of cereals J Liggins1, A Mulligan1,2, S Runswick1 and SA Bingham1,2* 1Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge, UK; and 2European Prospective Investigation of Cancer, University of Cambridge, Cambridge, UK Objective: To analyse 75 cereals and three soy flours commonly eaten in Europe for the phytoestrogens daidzein and genistein. Design: The phytoestrogens daidzein and genistein were extracted from dried foods, and the two isoflavones quantified after hydrolytic removal of any conjugated carbohydrate. Completeness of extraction and any procedural losses of the isoflavones 0 0 were accounted for using synthetic daidzin (7-O-glucosyl-4 -hydroxyisoflavone) and genistin (7-O-glucosyl-4 5-dihydroxyiso- flavone) as internal standards. Setting: Foods from the Cambridge UK area were purchased, prepared for eating, which included cooking if necessary, and freeze dried. Three stock soy flours were also analysed. Results: Eighteen of the foods assayed contained trace or no detectable daidzein or genistein. The soy flours were rich sources, containing 1639 – 2117 mg=kg. The concentration of the two isoflavones in the remaining foods ranged from 33 to 11 873 mg=kg. Conclusion: These analyses will supply useful information to investigators determining the intake of phytoestrogens in cereal products in order to relate intakes to potential biological activities. Sponsorship: This work was supported by the United Kingdom Medical Research Council, Ministry of Agriculture Fisheries and Food (contract FS2034) and the United States of America Army (contract DAMD 17-97-1-7028).
    [Show full text]
  • Contrasting Effects of Puerarin and Daidzin on Glucose Homeostasis in Mice
    8760 J. Agric. Food Chem. 2005, 53, 8760−8767 Contrasting Effects of Puerarin and Daidzin on Glucose Homeostasis in Mice ELIAS MEEZAN,† ELISABETH M. MEEZAN,† KENNETH JONES,† RAY MOORE,‡ | STEPHEN BARNES,†,‡,§, AND JEEVAN K. PRASAIN*,†,§ Department of Pharmacology & Toxicology, Comprehensive Cancer Center Mass Spectrometry Shared Facility, and Purdue-UAB Botanicals Center for Age-Related Diseases, and UAB Center for Nutrient-Gene Interaction in Cancer Prevention, University of Alabama at Birmingham, Birmingham, Alabama 35294 Puerarin and daidzin are the major isoflavone glucosides found in kudzu dietary supplements. In this study, we demonstrated that puerarin significantly improves glucose tolerance in C57BL/6J-ob/ob mice, an animal model of type 2 diabetes mellitus, blunting the rise in blood glucose levels after i.p. administration of glucose. In contrast, daidzin, the O-glucoside, had a significant but opposite effect, impairing glucose tolerance as compared to saline-treated controls. When they were administered i.p. with 14C-glucose to C57BL/6J lean mice, puerarin inhibited glucose uptake into tissues and incorporation into glycogen, while daidzin stimulated glucose uptake, showing an opposite effect to puerarin. Puerarin also antagonized the stimulatory effect of decyl-â-D-thiomaltoside, an artificial primer of glycogen synthesis, which increases 14C-glucose uptake and incorporation into glycogen in mouse liver and heart. A liquid chromatography-tandem mass spectrometry procedure was used to investigate the metabolism and bioavailability of puerarin and daidzin. The blood puerarin concentra- tion-time curve by i.p. and oral administration indicated that puerarin was four times more bioavailable via i.p. injection than via the oral route of administration.
    [Show full text]
  • Focus on Formononetin: Anticancer Potential and Molecular Targets
    Review Focus on Formononetin: Anticancer Potential and Molecular Targets Samantha Kah Ling Ong 1, Muthu K. Shanmugam 1, Lu Fan 1, Sarah E. Fraser 3, Frank Arfuso 4, Kwang Seok Ahn 2,*, Gautam Sethi 1,* and Anupam Bishayee 3,* 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; [email protected] (S.K.L.O.); [email protected] (M.K.S.); [email protected] (L.F.) 2 Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea 3 Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; [email protected] 4 Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; [email protected] * Correspondence: [email protected] (K.S.A.); [email protected] (G.S.); [email protected] or [email protected] (A.B.); Tel.: +82-2-961-2316 (K.S.A.); +65-6516-3267 (G.S.); +1-(941)-782-5950 (A.B.) Fax: +65-6873-7690 (G.S.) Received: 22 March 2019; Accepted: 28 April 2019; Published: 1 May 2019 Abstract: Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin’s antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer’s disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers.
    [Show full text]
  • Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone Electrophoresis
    separations Article Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone Electrophoresis Feng Luan *, Li Li Tang, Xuan Xuan Chen and Hui Tao Liu College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; [email protected] (L.L.T.); [email protected] (X.X.C.); [email protected] (H.T.L.) * Correspondence: fl[email protected]; Tel.: +86-535-6902063 Academic Editor: Doo Soo Chung Received: 29 October 2016; Accepted: 20 December 2016; Published: 1 January 2017 Abstract: Coffee is a favorite and beverage in Western countries that is consumed daily. In the present study, capillary zone electrophoresis (CE) was applied for the separation and quantification of three isoflavones including daidzein, genistein and formononetin in coffee. Extraction of isoflavones from the coffee sample was carried out by extraction and purification process using ether after the acid hydrolysis with the antioxidant butylated hydroxy-toluene (BHT). The experimental conditions of the CE separation method were: 20 mmol/L Na2HPO4 buffer solution, 25 kV applied voltage, 3 s hydrodynamic injection at 30 mbar, and UV detection at 254 nm. The results show that the three compounds can be tested within 10 min with a linearity of 0.5–50 µg/mL for all three compounds. The limits of detection were 0.0642, 0.134, and 0.0825 µg/mL for daidzein, formononetin and genistein, respectively. The corresponding average recovery was 99.39% (Relative Standard Detection (RSD) = 1.76%), 98.71% (RSD = 2.11%) and 97.37% (RSD = 3.74%). Keywords: capillary zone electrophoresis (CE); daidzein; genistein; formononetin; acid hydrolysis 1.
    [Show full text]
  • Ijoc 2014111915334185.Pdf
    International Journal of Organic Chemistry, 2014, 4, 236-246 Published Online December 2014 in SciRes. http://www.scirp.org/journal/ijoc http://dx.doi.org/10.4236/ijoc.2014.44027 Process for the Preparation of Chromones, Isoflavones and Homoisoflavones Using Vilsmeier Reagent Generated from Phthaloyl Dichloride and DMF Santosh Kumar Yadav Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, India Email: [email protected] Received 6 September 2014; revised 21 October 2014; accepted 6 November 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Vilsmeier reagent formed from phthaloyl dichloride and DMF was found to be very effective for converting 2-hydroxyacetophenones, deoxybenzoins and dihydrochalcones into corresponding chromones, isoflavones and homoisoflavones with excellent yield. This method offers significant advantages such as efficiency and mild reaction conditions with shorter reaction time. Keywords Phthaloyl Dichloride, Dimethylformamide, Chromones, Isoflavones, Homoisoflavones, BF3∙Et2O, Vilsmeier Reagent 1. Introduction In recent years, scientific interest towards chromones (2), isoflavones (9) and homoisoflavones (10) has in- creased. It is due to the limited distribution of these compounds in the plant kingdom and the possible health ef- fect these compounds exhibit. The development of new methodologies for the synthesis of these compounds
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI Chemical Activity Count (+)-AROMOLINE 1 (+)-CATECHIN 5 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-PRAERUPTORUM-A 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-ACETOXYCOLLININ 1 (-)-APOGLAZIOVINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 Chemical Activity Count 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,8-CINEOLE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 14-ACETOXYCEDROL 1 14-O-ACETYL-ACOVENIDOSE-C 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H-
    [Show full text]
  • Metabolism of Phytoestrogens in Dairy Cows - Effect of Botanical Composition of Silages
    metabolism of phytoestrogens in dairy cows - effect of botanical composition of silages omsetjing av planteøstrogen hjå mjølkekyr - effekt av botanisk samansetjing av surfôret kari marie njåstad master thesis 30 credits 2011 department of animal and aquacultural sciences Forord Denne masteroppgåva markerar avslutninga på fem fine år med studiar ved Universitetet for miljø- og biovitenskap, noko som er både godt og vemodig. Fem flotte og lærerike år har det vore, med fantastiske folk og eit inspirerande miljø! Gjennom heile studiet var eg var klar på at masteroppgåva mi sku omhandla drøvtyggjarernæring, og då eg fekk moglegheit til å vera med på forsøk var eg snar med å sei ja. Forsøksarbeidet har vore veldig variert, kjekt og lærerikt. Eg har vore igjennom hausting, botanisering av eng og fôringsforsøk med det prøveuttaksarbeid og preparering som høyrer til. Analysar av planteøstrogen på Foulum og ikkje minst; arbeid med resultat og formidling av dei i masteroppgåva. No, når arbeidet med masteroppgåva er slutt er det mange som skal takkast. Stor takk til mine vegleiarar Erling Thuen og Håvard Steinshamn for hjelp, støtte og vegleiing gjennom skriving av masteroppgåva. Tusen takk til Steffen Adler som har hatt meg med på forsøk, kome med resultat og svara på små og store spørsmål. Takk til Lis Sidelmann ved Det Jordbrugsvidenskabelige Fakultet, Foulum, for hjelp ved utføring av analysar, samt gode svar på spørsmål som dukka opp i etterkant. Ein særskild takk til Håvard som skubbar meg ut i utfordringar eg helst ikkje vil ha, men som eg er veldig glad for å få! J Tusen takk til Anne, David, Eirik mamma og pappa for gjennomlesing og gode konstruktive tilbakemeldingar på oppgåva.
    [Show full text]