Biological Control Beneath the Feet: a Review of Crop Protection Against Insect Root Herbivores

Total Page:16

File Type:pdf, Size:1020Kb

Biological Control Beneath the Feet: a Review of Crop Protection Against Insect Root Herbivores insects Review Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores Alan Kergunteuil, Moe Bakhtiari, Ludovico Formenti, Zhenggao Xiao, Emmanuel Defossez and Sergio Rasmann * Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland; [email protected] (A.K.); [email protected] (M.B.); [email protected] (L.F.); [email protected] (Z.X.); [email protected] (E.D.) * Correspondence: [email protected]; Tel.: +41-32-718-2337 Academic Editors: Andrew G. S. Cuthbertson and Eric W. Riddick Received: 9 October 2016; Accepted: 22 November 2016; Published: 29 November 2016 Abstract: Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes) and invertebrates included among the macrofauna of soils (arthropods and annelids) that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests. Keywords: biological control; root pests; soil fauna; belowground plant defenses; tri-trophic interactions 1. Introduction Agricultural land covers 25% of the Earth’s terrestrial surface and is one of the major drivers affecting global ecosystem health [1]. The transformation of agriculture after World War II led to the modern conventional approaches. However, the ecological costs of such agriculture have been largely underestimated, if not ignored, and evidence with respect to the actual limits of conventional agriculture regarding crop productivity continue to accumulate [2]. In the context where three billion kilograms of pesticides are annually applied worldwide and suspected to result in 220,000 deaths per year [3], numerous legislations have been implemented to reduce the use of wide-spectrum insecticides in order to protect both environmental and human health, although further efforts are required in this direction [4]. More sustainable approaches are, therefore, needed to resolve agronomic challenges while also reducing chemical pollution [5]. While insect herbivory causes severe damage to plant production in natural systems, their impact on agroecosystems is even more pronounced due to landscape simplification (e.g., loss of plant diversity and reduction of trophic interactions) [6]. Indeed, annual crop losses from damage caused by insects could be more than 15% [7]. In this context, it is worthwhile to consider below-ground herbivores that sustain a wide diversity and feed on various plant tissues, such as roots, rhizomes, and storage organs [8,9]. Root pests have always caused extensive damage to crops. For instance, the aphid root-feeding Daktulosphaira vitifoliae, the grape phylloxera, had almost destroyed the entire European Insects 2016, 7, 70; doi:10.3390/insects7040070 www.mdpi.com/journal/insects Insects 2016, 7, 70 2 of 22 Insects 2016, 7, 70 2 of 22 For instance, the aphid root-feeding Daktulosphaira vitifoliae, the grape phylloxera, had almost destroyed the entire European grape production [10], and root herbivores are still responsible for a grapelarge part production of yield [10 loss], and at the root glob herbivoresal scale are [11]. still Indeed, responsible root pests, for a large such part as wireworms of yield loss (Coleoptera: at the global scaleElateridae), [11]. Indeed, feed on root a pests,wide suchrange as of wireworms crops, includ (Coleoptera:ing cereals, Elateridae), potato, feedcarrot, on sugar a wide beet, range and of crops, fruit includingorchards [12]. cereals, The potato, cost of carrot,damage sugar caused beet, by and the fruitwestern orchards corn rootworm [12]. The cost (Diabrotica of damage virgifera caused virgifera by the) westernin Europe corn and rootworm in USA, (Diabrotica could be virgifera muchvirgifera greater) inth European $1 billion and in USA,annually could [13]. be much In the greater southern than $1hemisphere, billion annually the damage [13]. In caused the southern by the hemisphere,greyback canegrubs the damage (Dermolepida caused by albohirtum the greyback) cost canegrubs over $10 (millionDermolepida to sugarcane albohirtum producers) cost over [14]. $10 Despite million the to ec sugarcaneonomic importance producers [of14 root]. Despite herbivores, the economic research importanceaiming at developing of root herbivores, sustainable research solutions aiming to atdi developingminish their sustainable impact remains solutions scarce, to diminish compared their to impactthose pertaining remains scarce, to above-ground compared toherbivores. those pertaining One of tothe above-ground major reasons herbivores. is certainly Onetheir of unclear the major life reasonscycle, which is certainly leads to their the “out unclear of sight, life cycle, out of which mind” leads paradigm, to the “outas argued of sight, by Hunter out of mind” [8]. Indeed, paradigm, their asdevelopment argued by Hunterin soils [8 ].complicates Indeed, their the development detection of in infestations soils complicates and, consequently, the detection ofthe infestations resultant and,damages consequently, over the economic the resultant thresholds damages are over generally the economic disclosed thresholds much later are generally than useful. disclosed In addition, much latereven thanwhen useful. they Inare addition, readily detected, even when their they unde are readilyrground detected, mode of their life undergroundlimits the control mode of of root life limitsherbivores the control by chemical of root inputs, herbivores which by generally chemical inputs,requires which direct generally exposure requires to bio-active direct compounds. exposure to bio-activeOn the other compounds. hand, since On the the dispersion other hand, of root since herb theivores dispersion is comparatively of root herbivores limited isin comparatively soils, they are limitedmore persistent in soils, they locally, are moreas compared persistent to locally, above-ground as compared pests to [15]; above-ground this would pests favor [15 constant]; this would and favorlocalized constant applications and localized of bio-control applications agents of in bio-control the field. agents in the field. Figure 1.1.Biological Biological control control agents agents against against root insect root pests. insect (1 ) Entomopathogenicpests. (1) Entomopathogenic fungi (occasionally fungi endophytic);(occasionally (2endophytic);) free-living soil(2) microbes,free-living such soil asmicrobes,Trichoderma suchor asBacillus Trichodermaspp.; (3 )or entomopathogenic Bacillus spp.; (3) nematodes;entomopathogenic (4) viruses, nematodes; such as(4)Baculovirus viruses, such;(5 as) arthropodBaculovirus predators;; (5) arthropod and predators; (6) plant and endogenous (6) plant defensesendogenous and priming.defenses Arrowsand priming. represent Arrows trophic repres links. Differentent trophic line links. thicknesses Different represent line strengthsthicknesses of interactions,represent strengths with thicker of interactions, lines representing with thicker stronger lines potential representing biocontrol strong effectivenesser potential than biocontrol thinner lines.effectiveness Dashed than lines thinner represent lines. the Dashed currently lines weakest represent potential the currently for biological weakest control potential agents, for as biological described incontrol the text. agents, as described in the text. From an ecological perspective, biological pest control relies on two main forces: bottom-up From an ecological perspective, biological pest control relies on two main forces: bottom-up (i.e., the effect of plants on herbivores) and top-down pest control (i.e., the effect of predators and (i.e., the effect of plants on herbivores) and top-down pest control (i.e., the effect of predators and parasites on herbivores) [16,17]. Since a myriad of soil organisms feed on root herbivores, they could parasites on herbivores) [16,17]. Since a myriad of soil organisms feed on root herbivores, they could be be used as bio-control agents for root pest control in top-down control approaches. In the present used as bio-control agents for root pest control in top-down control approaches. In the present review, review, we summarize the use of microfauna (body width <100 µm) and macrofauna (body width >2 we summarize the use of microfauna (body width <100 µm) and macrofauna (body width >2 mm) in mm) in below-ground biological control (Figure 1). Microfauna is the most important biomass in below-ground biological control (Figure1). Microfauna is the most important biomass in soils and Insects 2016, 7, 70 3 of 22 represent a vast reservoir of bio-control agents. Herein,
Recommended publications
  • Morphological Systematics of the Nightshade Flea Beetles Epitrix
    Clemson University TigerPrints All Theses Theses 8-2016 Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico Anthony Martin Deczynski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Deczynski, Anthony Martin, "Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico" (2016). All Theses. 2479. https://tigerprints.clemson.edu/all_theses/2479 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MORPHOLOGICAL SYSTEMATICS OF THE NIGHTSHADE FLEA BEETLES EPITRIX FOUDRAS AND ACALLEPITRIX BECHYNÉ (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI) IN AMERICA NORTH OF MEXICO A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Anthony Martin Deczynski August 2016 Accepted by: Dr. Michael Caterino, Committee Chair Dr. Peter Adler Dr. J. Antonio Baeza ABSTRACT The flea beetle genera Epitrix and Acallepitrix are revised for America North of Mexico, building on a prior preliminary revision of the genus Epitrix by the author (Deczynski 2014). Four new species are described: Epitrix cuprea sp. nov., E. rileyi sp. nov., E. latifrons sp. nov., and E. vasinoda sp. nov., bringing the North American Epitrix fauna to a total of 26 species. A key is provided to adults of all species.
    [Show full text]
  • Mesostigmata No
    13 (1) · 2013 Christian, A. & K. Franke Mesostigmata No. 24 ............................................................................................................................................................................. 1 – 32 Acarological literature Publications 2013 ........................................................................................................................................................................................... 1 Publications 2012 ........................................................................................................................................................................................... 6 Publications, additions 2011 ....................................................................................................................................................................... 14 Publications, additions 2010 ....................................................................................................................................................................... 15 Publications, additions 2009 ....................................................................................................................................................................... 16 Publications, additions 2008 ....................................................................................................................................................................... 16 Nomina nova New species ................................................................................................................................................................................................
    [Show full text]
  • Da Flyer General
    The Citrus Root Weevil The citrus root weevil, Diaprepes abbreviatus, is a large colorful weevil that is native to the Caribbean Islands. This weevil was accidentally introduced into Florida in the 1960’s where it has caused extensive damage. It has been intercepted in shipments of plants to California. This weevil will feed on about 270 different plants including citrus, guava, loquat, holly, and other ornamentals. An adult citrus root weevil (approximate size a to w inch in length). 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234
    [Show full text]
  • Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
    insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil.
    [Show full text]
  • Root Weevils Ryan Davis Arthropod Diagnostician
    Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-193-18 May 2018 Root Weevils Ryan Davis Arthropod Diagnostician Quick Facts • Root weevils are a group of small, black-to-brown weevils that commonly damage ornamental and small fruit plants in Utah. • Adult root weevil damage is characterized by marginal leaf notching and occasional feeding on buds and young shoots. • Larval root weevil damage occurs below ground; damage to roots can lead to canopy decline or plant death. • Root weevils are occasional nuisance pests in homes and structures mid-summer through fall. • Manage root weevil larvae by applying a systemic insecticide to the soil around host plants April through September. • Adults feeding on the above-ground portion of plants can be targeted with pyrethroid pesticides Black vine weevil adult (Kent Loeffler, Cornell University, Bugwood.org) starting in late June or early July. IDENTIFICATION INTRODUCTION Root weevils are small beetles ranging in length from about 1/4 to 1/3 inch depending on The black vine weevil (Otiorhynchus sulcatus), species. Coloration is variable, but the commonly lilac root weevil (O. meridionalis) strawberry weevil encountered species in Utah are black with gold (O. ovatus) and rough strawberry root weevil (O. flecks (black vine weevil) or solid brown to black, rugosostriatus) are a complex of non-native, snout- shiny or matte. As a member of the weevil family nosed beetles (Coleoptera: Curculionidae) that (Curculionidae), these pests have a snout, but it cause damage to ornamentals and small fruit crops is shortened and rectangular compared to other in Utah. Root weevils are occasional nuisance pests weevils that have long, skinny mouthparts.
    [Show full text]
  • Root Weevils Fact Sheet No
    Root Weevils Fact Sheet No. 5.551 Insect Series|Home and Garden by W.S. Cranshaw* None of the root weevils can fly and A root weevil is a type of “snout beetle” they are night active, hiding during the Quick Facts that develops on the roots of various plants. day around the base of host plants, usually Adult stages produce more conspicuous under a bit of cover. About an hour after • Root weevils can be common plant damage, cutting angular notches along sunset they become active and crawl onto insects that develop on roots the edge of leaves when they feed at night. the plants to feed on leaves, producing their of many garden plants. Adult root weevils also may attract attention characteristic angular notches. If disturbed, • Adult root weevils chew when they wander into buildings, acting as a root weevils will readily drop from plants and distinctive notches along the temporary “nuisance invader”. play dead. The most common root weevils found Adults typically live for at least a couple edges of leaves at night. in Colorado are strawberry root weevil of months, and some may be present into • Some kinds of root weevils (Otiorhynchus ovatus), rough strawberry autumn. Most eggs are laid in late spring and often wander into homes but root weevil (O. rugostriatus), black vine early summer with females squeezing eggs cause no injury indoors. weevil (O. sulcatus) and lilac root weevil into soil cracks. A few days after they are (O. meridionalis). Dyslobus decoratus is laid, eggs hatch and the larvae move to the • Insecticides applied on the established in some areas and chews leaves roots where they feed.
    [Show full text]
  • Biocontrol of the Sugarcane Rootstalk Borer, Dioprepes Abbreviatus (L) (Coleoptera: Curculionidae), with Entomophilic Nematodes
    Biocontrol of the sugarcane rootstalk borer, Dioprepes abbreviatus (L) (Coleoptera: Curculionidae), with entomophilic nematodes Wilfredo FiguerooS and Jesse Roman* ABSTRACT Eight greenhouse trials evaluated the efficacy of three species of en­ tomophilic nematodes of the genus Steinernema ( = Neoaplectana) in con­ trolling neonate and 6-, 10-, and 14-week-old larvae of the sugarcane rootstalk borer (SRB), Diaprepes abbreviatus (L.)r in sugarcane. Different densities of the nematodes Steinernema feltiae Filfp[ev, S. glaseri Steiner, and 5, bibionis Bobien were tested. The infective nematodes controlled the 6- to 14-week-old (0.64 to 2.54 cm) larvae. Significant results were also observed on the control of the effect of the larvae on sugarcane in the various parameters measured. No significant effects were observed with neonate (first instar) larvae. Larval mortality increased with age. Eighty- five percent mortality of 10-week-old grubs was observed at 240,000 nematodes per 1.8 kg of soil with a surface area of 0.02 m.2 Control of 10-week-old grubs was also possible at 480,000 nematodes per 3.6 kg of soil with a surface area of 0.03 m.2 Fourteen-week-old grubs were the most susceptible to the attack of 5. feltiae. S. glaseri is more effective than S, bibionis in controlling the grubs, but the effect of 5, glaseri on the grubs is less consistent than that of S. feltiae. The three species of Steinernema performed well at temperatures of 20° to 31° C. RESUMEN Nematodos entomofilicos para controlar el gorgojo barrenador de la raiz de la cana de azucar, Diaprepes abbreviatus Se hicieron ocho experimentos de invernadero con cana de azucar de 4 y 7 meses de germinada para determinar la susceptibilidad de las Iarvas (neonatas y de 6, 10 y 14 semanas de edad) de Diaprepes abbreviatus a los nematodos entomofilicos del genero Steinernema.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Appl. Entomol. Zool. 45(1): 89-100 (2010)
    Appl. Entomol. Zool. 45 (1): 89–100 (2010) http://odokon.org/ Mini Review Psocid: A new risk for global food security and safety Muhammad Shoaib AHMEDANI,1,* Naz SHAGUFTA,2 Muhammad ASLAM1 and Sayyed Ali HUSSNAIN3 1 Department of Entomology, University of Arid Agriculture, Rawalpindi, Pakistan 2 Department of Agriculture, Ministry of Agriculture, Punjab, Pakistan 3 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK (Received 13 January 2009; Accepted 2 September 2009) Abstract Post-harvest losses caused by stored product pests are posing serious threats to global food security and safety. Among the storage pests, psocids were ignored in the past due to unavailability of the significant evidence regarding quantitative and qualitative losses caused by them. Their economic importance has been recognized by many re- searchers around the globe since the last few years. The published reports suggest that the pest be recognized as a new risk for global food security and safety. Psocids have been found infesting stored grains in the USA, Australia, UK, Brazil, Indonesia, China, India and Pakistan. About sixteen species of psocids have been identified and listed as pests of stored grains. Psocids generally prefer infested kernels having some fungal growth, but are capable of excavating the soft endosperm of damaged or cracked uninfected grains. Economic losses due to their feeding are directly pro- portional to the intensity of infestation and their population. The pest has also been reported to cause health problems in humans. Keeping the economic importance of psocids in view, their phylogeny, distribution, bio-ecology, manage- ment and pest status have been reviewed in this paper.
    [Show full text]
  • 1 Reproductive Efficiency of Entomopathogenic Nematodes As Scavengers. Are They Able to 1 Fight for Insect's Cadavers?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sapientia 1 Reproductive efficiency of entomopathogenic nematodes as scavengers. Are they able to 2 fight for insect’s cadavers? 3 4 Rubén Blanco-Péreza,b, Francisco Bueno-Palleroa,b, Luis Netob, Raquel Campos-Herreraa,b,* 5 6 a MeditBio, Centre for Mediterranean Bioresources and Food, Universidade do Algarve, Campus 7 de Gambelas, 8005, Faro (Portugal) 8 b Universidade do Algarve, Campus de Gambelas, 8005, Faro (Portugal) 9 10 *Corresponding author 11 Email: [email protected] 12 1 13 Abstract 14 15 Entomopathogenic nematodes (EPNs) and their bacterial partners are well-studied insect 16 pathogens, and their persistence in soils is one of the key parameters for successful use as 17 biological control agents in agroecosystems. Free-living bacteriophagous nematodes (FLBNs) in 18 the genus Oscheius, often found in soils, can interfere in EPN reproduction when exposed to live 19 insect larvae. Both groups of nematodes can act as facultative scavengers as a survival strategy. 20 Our hypothesis was that EPNs will reproduce in insect cadavers under FLBN presence, but their 21 reproductive capacity will be severely limited when competing with other scavengers for the same 22 niche. We explored the outcome of EPN - Oscheius interaction by using freeze-killed larvae of 23 Galleria mellonella. The differential reproduction ability of two EPN species (Steinernema 24 kraussei and Heterorhabditis megidis), single applied or combined with two FLBNs (Oscheius 25 onirici or Oscheius tipulae), was evaluated under two different infective juvenile (IJ) pressure: 26 low (3 IJs/host) and high (20 IJs/host).
    [Show full text]
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • Regional IPPC Workshops 2015 Surveillance: Working Together to Strengthen Implementation
    International Plant Protection Convention Surveillance: Working together to strengthen implementation Regional IPPC Workshops 2015 Surveillance: Working together to strengthen implementation The CPM agreed for an increased emphasis on surveillance in the next several years. This will take place through an Implementation Pilot Programme on Surveillance, which will be a coordinated effort with active participation from contracting parties and RPPOs. The Regional IPPC Workshops are an opportunity to share experiences with surveillance activities such as: current status, upcoming plans, and successes and challenges of surveillance activities within your country. In 2015, Member Countries answered a questionnaire on surveillance circulated by the IPPC Secretariat, and presented a summary on surveillance activities undertaken during the regional workshop. The data provided by Member Countries were extremely rich and useful to define activities to be set in the framework of the Implementation Pilot Programme on Surveillance. The content of the questionnaire for the regions in which an IPPC regional workshop was organized are provided below: Near East and North Africa, Pacific, Central Asia and Eastern Europe, Caribbean and Latin America (in Spanish). Surveillance: An official process which collects and records data on pest presence or absence by survey, monitoring or other procedures (ISPM 5) Question 1: What general surveillance activities take place in your country? (General surveillance is a process whereby information on particular pests which are of concern for an area is gathered from many sources, wherever it is available and provided for use by the NPPO – ISPM 6) 1. NEAR EAST AND NORTH AFRICA Egypt: The general surveillance applied is the mainly through the weed institute which the institute apply on general basis based on the ISPM 6.
    [Show full text]