Ionic Liquids and Continuous Flow Processes

Total Page:16

File Type:pdf, Size:1020Kb

Ionic Liquids and Continuous Flow Processes Volume 17 Number 5 May 2015 Pages 2589–3178 Green Chemistry Cutting-edge research for a greener sustainable future www.rsc.org/greenchem ISSN 1463-9262 TUTORIAL REVIEW Eduardo García-Verdugo et al. Ionic liquids and continuous fl ow processes: a good marriage to design sustainable processes Green Chemistry View Article Online TUTORIAL REVIEW View Journal | View Issue Ionic liquids and continuous flow processes: a good marriage to design sustainable processes Cite this: Green Chem., 2015, 17, 2693 Eduardo García-Verdugo,*a Belen Altava,a M. Isabel Burguete,a Pedro Lozanob and S. V. Luisa In the last few years the use of Ionic Liquids (ILs) as alternative solvents for (bio)catalytic processes has Received 4th December 2014, increased substantially, and the benefits and different approaches reported to combine continuous flow Accepted 2nd March 2015 systems and ILs are at the core of this overview. The synergy between both elements allowed us to high- DOI: 10.1039/c4gc02388a light their great potential in manufacturing both bulk and fine chemicals by new and greener (bio)catalytic www.rsc.org/greenchem processes. 1. Introduction backs and hazards associated with traditional solvents, replac- ing them with safer and more efficient alternatives. This can Creative Commons Attribution 3.0 Unported Licence. Over the last decade academia and industry have been working be achieved, ideally, through the design of new substances together in order to develop new greener alternative solvents.1 with specific and tailored properties. This is the case of ionic The main aim is to reduce significantly the important draw- liquids (ILs), for which the performance can be tuned to be as good as or even better than that of conventional solvents for many applications.2 The application of other alternative reac- a ı Departamento de Quí mica Inorgánica y Orgánica, Universidad Jaume I, tion media including, amongst others, water, supercritical Campus del Riu Sec, Avenida Sos Baynant s/n, E-12071 Castellón, Spain. fluids, switchable solvents and fluorous solvents is also envi- E-mail: [email protected], [email protected] 3 bDepartamento de Bioquímica y Biología Molecular “B” e Inmunología, Facultad de saged. In this regard, a variety of new chemical processes This article is licensed under a Química, Universidad de Murcia, E-30.100 Murcia, Spain. E-mail: [email protected] have been designed based on those alternative solvents in Open Access Article. Published on 18 March 2015. Downloaded 10/2/2021 6:00:51 PM. E. García-Verdugo was born in Belén Altava completed her 1972 in Talavera de Reina, degree in chemistry at the Uni- Spain. He obtained his chemistry versities of Valencia and Zara- degree at the University of Valen- goza and obtained her PhD cia (1995) and his PhD in chem- in chemistry at the University istry at the University Jaume I Jaume I of Castellón in 1996. (Spain) in 2001. Then, he After postdoctoral stays at the worked as a researcher at University of Düsseldorf with Nottingham University (UK) Professor G. Wulff and at Novar- under the supervision of tis (Basel) with Dr H. U. Blaser M. Poliakoff (until 2004). He she returned to Spain and returned to Spain and worked as obtained a permanent academic Eduardo García-Verdugo a Ramon y Cajal fellow at Uni- Belen Altava position at the University Jaume versity Jaume I until 2009, and I in 2001. Her main areas of then he obtained a permanent position as Cientifico Titular of research are directly related to green and sustainable chemistry CSIC at ICP (Madrid) (2009–2010). In 2010, he moved to a per- and involve the development of supported catalysts, asymmetric manent academic position at the University Jaume I. Currently, he catalysis, the preparation and application of new task specific is working on the integration of different so-called enabling tech- ionic liquids, in particular chiral ionic liquids, and the application niques (catalysis, polymeric materials, continuous flow processes, of these compounds and other amino acid derived systems for microreactors, bio-catalysis, neoteric solvents (ILs, SCFs)) to selective recognition. develop more efficient and greener organic transformations. This journal is © The Royal Society of Chemistry 2015 Green Chem.,2015,17, 2693–2713 | 2693 View Article Online Tutorial Review Green Chemistry order to exploit their advantages and to implement their use lenges of the chemical industry, achieving significant scientific in well-known chemical processes. and technological breakthroughs. Indeed, the examples here An additional factor that can contribute to implement the presented describe a series of techniques, methodologies and sustainability of a chemical transformation is the substitution approaches that could allow the development of new and more – of batch processes by flow processes.4 8 Advantages associated efficient chemical processes, not only taking into account clas- with flow systems include the improvement in mass and heat sical parameters such as yield, purity or selectivity, but also transfer, with significant intensification of the process, considering, for the overall equation, the environmental and making available systems working 24 h a day, 7 days a week hazard costs. Our goal in this review is to present some signifi- (24/7), or their easier optimization through the adjustments of cant cases highlighting the main advantages and some of the simple parameters such as flow, pressure or temperature. shortcomings found for the combined use of ILs and continu- In addition, the scale-up of flow processes is generally more ous flow technologies. easily attainable than for batch processes via different approaches such as the scale-out or the number-up.4 Although the advantages of flow chemistry were soon realized by the bulk chemistry industry, the situation is quite different in the 2. Continuous flow processes for the fine chemicals or pharmaceutical industries. Most industrial synthesis and scale-up of ILs petrochemical processes, and many of those for the prepa- ration of bulk chemicals, are carried out in flow, but batch pro- A wide variety of ILs can be designed, taking into account their cesses still dominate in other industrial areas, and a high modular character, considering structural elements such as pressure is currently being exerted to introduce flow processes the nature of the cation, the nature of the anion, the ion sub- there. In the last few years, there has been a blossoming of stitution patterns, the introduction of either bio-renewable or new developments in the field of the application of flow pro- chiral moieties, etc. Indeed, a wide range of structurally 10 Creative Commons Attribution 3.0 Unported Licence. cesses in complex organic syntheses, especially those based on different ILs has been reported. Besides, ILs can be regarded the application of microstructured devices.9 as “design solvents” not only because their structure can be Here, we shall focus on recent advances in the use of ILs, tailored on demand, but also because their physical and working alone or together with other neoteric solvents chemical properties can be tuned at the molecular level by (i.e. supercritical fluids), exploring their great potential to selecting the right combination of structural elements. These manufacture both bulk and fine chemicals by continuous flow unique opportunities offered by ILs have resulted in increasing systems. The combination of (bio)catalytic reactions in ILs their use as alternatives to classic organic solvents and their with continuous flow processes can fulfil the needs and chal- application in completely unexpected new fields.11 This article is licensed under a M. Isabel Burguete graduated in Pedro Lozano is a chemist born Open Access Article. Published on 18 March 2015. Downloaded 10/2/2021 6:00:51 PM. chemistry at the University of in 1961 in Ceutí, Spain. He Zaragoza in Spain and after a graduated in Sciences (chem- stay at the University of Pitts- istry) at the University of Murcia burgh (USA) under the supervi- in 1984. He received his PhD in sion of Dr J. Rebek, she Sciences (chemistry) from the completed her PhD at the Univer- University of Murcia in 1988. sity of Valencia in 1989 under Between 1990 and 1991 he spent the direction of Dr F. Gaviña two years at the Centre de Bioin- working on regulated crown génierie Gilbert Durand, Tou- ethers and convergent diacids. In louse (France) as a post-doctoral 1989 she took an academic fellow. In 1993, he returned to M. Isabel Burguete appointment at the University Pedro Lozano the Faculty of Chemistry at the Jaume I in Castellón (Spain) University of Murcia as Lecturer where she is currently Professor of organic chemistry. Her main in Biochemistry and Molecular Biology, being finally promoted to field of research is the development of new tools, in particular Full Professor in 2004. During the period 1996–2014, he was homogeneous and supported catalysis approaches, in green and Assistant-Dean of the Faculty of Chemistry and the coordinator of sustainable chemistry. the Biochemistry Degree at the University of Murcia. Since 2014, Prof. Lozano has been the Dean of the Faculty of Chemistry at the University of Murcia. His research activity has always been related to enzyme technology for green chemistry, and his particular research interest is in the use of enzymes in ionic liquids and supercritical fluids. 2694 | Green Chem.,2015,17, 2693–2713 This journal is © The Royal Society of Chemistry 2015 View Article Online Green Chemistry Tutorial Review In general, the synthesis of ILs is a simple process involving pound can be considered both a bulk IL and a source of the quarternisation of an amine, imidazole, pyridine or phos- various other ILs, through a two-step synthesis approach. phine, through an alkylation reaction, to form the corres- Thus, the first step involves the synthesis of a methylsulfate or ponding cation.
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • United States Patent (19) (11) 3,855,105 Diveley (45) Dec
    United States Patent (19) (11) 3,855,105 Diveley (45) Dec. 17, 1974 54 THOPHOSPHORYLATING ASATURATED 3,284,540 1 1/1966 D'Alelio.............................. 260/869 HYDROCARBON GROUP 75 Inventor: William R. Diveley, Oakwood Hills, Primary Examiner-Benjamin R. Padgett Del. Attorney, Agent, or Firm-George H. Hopkins 73 Assignee: Hercules incorporated, Wilmington, (57) ABSTRACT Del. Disclosed is a process for making certain organo thio 22) Filed: June 16, 1969 phosphates and dithiophosphates, a number of which 21 ) Appl. No.: 833,741 have utility as insecticides. The process comprises ef fecting by free radical catalysis at about 0-150°C. re Related U.S. Application Data action of an organic compound characterized by a sat (63) Continuation-in-part of Ser. No. 514,652, Dec. 17, urated carbon with at least one hydrogen replaceable 1965, abandoned. under free radical conditions, and halo-thiophosphate of the formula: 52 U.S. C. ..... 204/162 R, 204/158 R, 260/329 R, 260/329 P, 260/340.6, 260/347.2, 260/958, 7, OR . 1 / 260/963, 260/971 X-S-P (51) Int. Cl................................................ B01j 1/10 N 58 Field of Search ............ 204/162, 158; 260/329, OR 260/340.6, 347.2,958, 963,971 wherein X is a halo radical, Z is selected from the (56) References Cited group consisting of the oxo and thioxo radicals, and R UNITED STATES PATENTS and R' are organic radicals. 3,256,370 6/1966 Fitch et al........................... 260/972 24 Claims, No Drawings 3,855, 105 2 THIOPHOSPHORYLATING ASATURATED rated carbons, each of which has one or more hydrogen HYDROCARBON GROUP radicals replaceable under free radical conditions.
    [Show full text]
  • Friedel-Crafts Alkylation of Aromatic Compounds with Phosphorus Estersla B
    ALKYLATION OF AROMATIC COMPOUNDS WITH PHOSPHORUS ESTERS 1339 Analyse der Verbindungen: Die Einlagerungsverbin- Kalium-titandisulfid: Kalium 21,0%, Titan 33, 8%, dungen wurden vorsichtig mit HN03 aufgeschlossen. Schwefel 44,2%, Summe: 99,0%. Zusammen- Das im Fall der Wolframverbindungen dabei ausfal- setzung: Ko^TiSj,^ . lende W03 wurde alkalisch gelöst. Wolfram und Mo- Reaktionsprodukt von WS* mit Li-naphthalid (Uber- lybdän wurden als Oxinat, Titan als TiOa und Schwe- schuß) : Lithium 9,8%, Wolfram 66,3%, Schwefel fel als BaS04 bestimmt. Die Bestimmung der Alkali- 23,5%, Summe: 99,6%. Verhältnis 1 W : 2 Lili95S. metalle erfolgte flammenphotometrisch. Reaktionsprodukt WS2 mit Na-naphthalid (Überschuß) : Kalium-wolf ramdisulfid: Präparat I: Kalium 8,3%, Natrium 26,9%, Wolfram 53,1%, Schwefel 18,8%, Wolfram 66,9%, Schwefel 23,7%, Summe: 98,9%. Summe: 98,8%. Verhältnis: 1 W : 2 Na2,0S. Zusammensetzung: K0.59WS2)0 . Präparat II: Kalium 8,1%, Wolfram 67,1%, Schwe- fel 23,4%, Summe: 98,6%. Zusammensetzung: K0.57WS2,O . Kalium-molybdändisulfid: Kalium 10,86%, Molybdän Wir danken der Deutschen Forschungsgemeinschaft 53,6%, Sdiwefel 35,5%, Summe: 99,9%. Zusam- und dem Fonds der Chemie für die Unterstützung die- mensetzung: K0!49MoS1?98 . ser Arbeit. 1 Auszug aus der Dissertation E. BAYER. Tübingen 1970. 5 T. E. HOVEN-ESCH U. J. SMID, J. Amer. chem. Soc. 87, 669 2 W. RÜDORFF, Chimia [Zürich] 19,489 [1965], [1965]. 3 H. M. SICK, Dissertation Tübingen 1959. 6 W. BILTZ, P. EHRLICH U. M. MEISEL, Z. anorg. allg. Chem. 4 C. STEIN. J. POULENARD, L. BONNETAIN U. J. GOLE, C. R. 234,97 [1934], hebd.
    [Show full text]
  • A Particular Focus on P-Cymene
    materials Review Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene Anna Marchese 1, Carla Renata Arciola 2,3, Ramona Barbieri 1, Ana Sanches Silva 4,5, Seyed Fazel Nabavi 6, Arold Jorel Tsetegho Sokeng 7, Morteza Izadi 8, Nematollah Jonaidi Jafari 8, Ipek Suntar 9, Maria Daglia 7,* ID and Seyed Mohammad Nabavi 6,* 1 Sezione di Microbiologia DISC-IRCCS San Martino-IST University of Genoa, 16132 Genoa, Italy; [email protected] (A.M.); [email protected] (R.B.) 2 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy; [email protected] 3 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy 4 National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4480 Vila do Conde, Portugal; [email protected] 5 Center for Study in Animal Science (CECA), ICETA, University of Oporto, 4051-401 Oporto, Portugal 6 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 19395-5487, Iran; [email protected] 7 Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; [email protected] 8 Health Research Center, Baqiyatallah University of Medical Sciences, Tehran 19395-5487, Iran; [email protected] (M.I.); [email protected] (N.J.J.) 9 Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey; [email protected] * Correspondence: [email protected] (M.D.); [email protected] (S.M.N.); Tel./Fax: +98-21-88617712 (M.D.); +39-0382-987388 (S.M.N.) Received: 25 July 2017; Accepted: 11 August 2017; Published: 15 August 2017 Abstract: p-Cymene [1-methyl-4-(1-methylethyl)-benzene] is a monoterpene found in over 100 plant species used for medicine and food purposes.
    [Show full text]
  • Sources of Non-Methane Hydrocarbons in Surface Air in Delhi, India” Gareth J
    Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2020 Supplement to “Sources of non-methane hydrocarbons in surface air in Delhi, India” Gareth J. Stewart, a Beth S. Nelson, a Will S. Drysdale, a W. Joe F. Acton, b Adam R. Vaughan, a James R. Hopkins, a,c Rachel E. Dunmore, a C. Nicholas Hewitt, b Eiko Nemitz, d Neil Mullinger, d Ben Langford, d Shivani, e Ernesto R. Villegas, f Ranu Gadi, e Andrew R. Rickard, a,c James D. Lee a,c and Jacqueline F. Hamilton. a a Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK c National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK d UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK e Indira Gandhi Delhi Technical University for Women, Kashmiri Gate, New Delhi, Delhi 110006, India f Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK ESI1 – Air quality index in Delhi Plot created with air quality information data downloaded from the US embassy, New Delhi, for 2018 using US EPA method for calculation of air quality index (AQI). 1 Figure S1. AQI for New Delhi measured at the US embassy during 2018. ESI2 – Mean, minimum and maximum mixing ratios Calculated over sample periods where both DC-GC-FID and GCxGC-FID were measuring (29/05/18 20:00 to 05/06/18 11:00 and 11/10/2018 22:00 to 27/10/18 17:00).
    [Show full text]
  • List of Dangerous Goods in Numerical Order See Volume II 3.2.2 Table
    CHAPTER 3.2 LIST OF DANGEROUS GOODS 3.2.1 Table A: List of dangerous goods in numerical order See Volume II 3.2.2 Table B: List of dangerous goods in alphabetical order See Volume II 3.2.3 Table C: List of dangerous goods accepted for carriage in tank vessels in numerical order Explanations concerning Table C: As a rule, each row of Table C of this Chapter deals with the substance(s) covered by a specific UN number or identification number. However, when substances belonging to the same UN number or identification number have different chemical properties, physical properties and/or carriage conditions, several consecutive rows may be used for that UN number or identification number. Each column of Table C is dedicated to a specific subject as indicated in the explanatory notes below. The intersection of columns and rows (cell) contains information concerning the subject treated in that column, for the substance(s) of that row: – The first four cells identify the substance(s) belonging to that row; – The following cells give the applicable special provisions, either in the form of complete information or in coded form. The codes cross-refer to detailed information that is to be found in the numbers indicated in the explanatory notes below. An empty cell means either that there is no special provision and that only the general requirements apply, or that the carriage restriction indicated in the explanatory notes is in force. The applicable general requirements are not referred to in the corresponding cells. Explanatory notes for each column: Column (1) “UN number/identification number” Contains the UN number or identification number: – of the dangerous substance if the substance has been assigned its own specific UN number or identification number, or – of the generic or n.o.s.
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]
  • United States Patent Office Patented Jan
    3,555,103 United States Patent Office Patented Jan. 12, 1971 2 3,555,103 ter yield with the formation of a smaller number of by PREPARATHON OF CYMENES products, and the fraction of the by-products which may Max Strohmeyer, Ludwigshafen (Rhine), Germany, as be used again in the reaction is higher. In the produc signor to Badische Anilin- & Soda-Fabrik Aktienge tion of p-cymene, far smaller amounts of thr difficultly sellschaft, Ludwigshafen (Rhine), Germany separable o-isomer are obtained. No Drawing. Filed July 16, 1968, Ser. No. 745,093 5 Methyldiisopropylbenzenes, preferably the 1,3,5- and Claims priority, application Germany, July 19, 1967, 1,2,4-methyldiisopropylbenzene, and toluene or mixtures 1,643,629 thereof are used as the starting materials. The aforemen Int. CI. C07c3/58, 5/22 tioned mixtures preferably contain a substance which can U.S. C. 260-672 15 Claims react in the transalkylation stage with toluene to form IO cymenes, for example triisopropylbenzene. The reaction mixture which is obtained at the end of the reaction after ABSTRACT OF THE DISCLOSURE the alkylation stage is advantageously recycled after sepa Process for the preparation of cymenes by reaction of ration of the cymenes, and is used together with fresh methyldiisopropylbenzenes with toluene and propylene in 5 starting materials as the starting mixture. If interest is two or three stages. The products of the new process centered on one specific end product only, for example are valuable starting materials for the production of plas p-cymene, any isomers formed in the reaction may be re tics materials or fibers.
    [Show full text]
  • Adaptations of Guest and Host in Expanded Self-Assembled Capsules
    Adaptations of guest and host in expanded self-assembled capsules Dariush Ajami and Julius Rebek, Jr.* The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute MB-26, 10550 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Julius Rebek, Jr., August 23, 2007 (sent for review August 2, 2007) Reversible encapsulation complexes create spaces where two or more molecules can be temporarily isolated. When the mobility of encapsulated molecules is restricted, different arrangements in space are possible, and new forms of isomerism (‘‘social isomer- ism’’) are created: the orientation of one encapsulated molecule influences that of the other in the confined space. Expansion of a capsule’s length is possible through addition of small-molecule spacer elements. The expanded capsules have dimensions that permit the observation of social isomerism of two identical guests, and they adopt arrangements that properly fill the host’s space. The host also can adapt to longer guests by incorporating addi- tional spacers, much as protein modules are added to a viral capsid in response to larger genomes. Arachidonic and related fatty acid derivatives act in this way to induce the assembly of further extended capsules having sufficient length to accommodate them. encapsulation ͉ self-assembly ͉ social isomers ncapsulation complexes are synthetic, self-assembled hosts Ethat more or less completely surround their guest molecules. They are dynamic and form reversibly in solution with lifetimes ranging from milliseconds to days. The capsules isolate mole- cules from the bulk solution, and they reveal behaviors that cannot be seen otherwise. They have become a tool of modern Fig.
    [Show full text]
  • "Hydrocarbons," In: Ullmann's Encyclopedia of Industrial Chemistry
    Article No : a13_227 Hydrocarbons KARL GRIESBAUM, Universit€at Karlsruhe (TH), Karlsruhe, Federal Republic of Germany ARNO BEHR, Henkel KGaA, Dusseldorf,€ Federal Republic of Germany DIETER BIEDENKAPP, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany HEINZ-WERNER VOGES, Huls€ Aktiengesellschaft, Marl, Federal Republic of Germany DOROTHEA GARBE, Haarmann & Reimer GmbH, Holzminden, Federal Republic of Germany CHRISTIAN PAETZ, Bayer AG, Leverkusen, Federal Republic of Germany GERD COLLIN, Ruttgerswerke€ AG, Duisburg, Federal Republic of Germany DIETER MAYER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany HARTMUT Ho€KE, Ruttgerswerke€ AG, Castrop-Rauxel, Federal Republic of Germany 1. Saturated Hydrocarbons ............ 134 3.7. Cumene ......................... 163 1.1. Physical Properties ................ 134 3.8. Diisopropylbenzenes ............... 164 1.2. Chemical Properties ............... 134 3.9. Cymenes; C4- and C5-Alkylaromatic 1.3. Production ....................... 134 Compounds ...................... 165 1.3.1. From Natural Gas and Petroleum . .... 135 3.10. Monoalkylbenzenes with Alkyl Groups 1.3.2. From Coal and Coal-Derived Products . 138 >C10 ........................... 166 1.3.3. By Synthesis and by Conversion of other 3.11. Diphenylmethane .................. 167 Hydrocarbons . .................. 139 4. Biphenyls and Polyphenyls .......... 168 1.4. Uses ............................ 140 4.1. Biphenyl......................... 168 1.5. Individual Saturated Hydrocarbons ... 142 4.2. Terphenyls......................
    [Show full text]
  • NJC Accepted Manuscript
    NJC Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/njc Page 1 of 16 PleaseNew Journal do not adjustof Chemistry margins New Journal of Chemistry PERSPECTIVE REVIEW Zeolite science and technology at Eni Giuseppe Bellussi,a Roberto Millini,b Paolo Pollesela and Carlo Peregob* Received 00th January 20xx, In the last forty years Eni laboratories have contributed to the advancement of zeolite science and technology in both the Accepted 00th January 20xx materials synthesis and characterization and the application in catalysis. This work has led to several industrial applications for selective oxidations and acid-base catalysis as well as for gas separation and water remediation. A brief review of the DOI: 10.1039/x0xx00000x main results is reported with some comments of the future perspectives for these branches of technology.
    [Show full text]
  • Research and Special Programs Admin., DOT § 172.101
    Research and Special Programs Admin., DOT § 172.101 TABLE 2 TO APPENDIX AÐRADIONUCLIDESÐ the class of the material must be determined Continued in accordance with § 173.2a of this sub- chapter. 3. This appendix contains two columns. (2)Ð (3)ÐReportable Atomic The first column, entitled ``S.M.P.'' (for se- (1)ÐRadionuclide Num- Quantity (RQ) ber Ci (TBq) vere marine pollutants), identifies whether a material is a severe marine pollutant. If the Ytterbium-169 .......................... 70 10 (.37) letters ``PP'' appear in this column for a ma- Ytterbium-175 .......................... 70 100 (3.7) terial, the material is a severe marine pol- Ytterbium-177 .......................... 70 1000 (37) lutant, otherwise it is not. The second col- Ytterbium-178 .......................... 70 1000 (37) umn, entitled ``Marine Pollutant'' , lists the Yttrium-86 ................................ 39 10 (.37) Yttrium-86m ............................. 39 1000 (37) marine pollutants. Yttrium-87 ................................ 39 10 (.37) 4. If a material not listed in this appendix Yttrium-88 ................................ 39 10 (.37) meets the criteria for a marine pollutant, as Yttrium-90 ................................ 39 10 (.37) provided in the General Introduction of the Yttrium-90m ............................. 39 100 (3.7) IMDG Code, Guidelines for the Identification Yttrium-91 ................................ 39 10 (.37) of Harmful Substances in Packaged Form, Yttrium-91m ............................. 39 1000 (37) Yttrium-92 ................................ 39 100 (3.7) the material may be transported as a marine Yttrium-93 ................................ 39 100 (3.7) pollutant in accordance with the applicable Yttrium-94 ................................ 39 1000 (37) requirements of this subchapter. Yttrium-95 ................................ 39 1000 (37) 5. If approved by the Associate Adminis- Zinc-62 ..................................... 30 100 (3.7) trator for Hazardous Materials Safety, a ma- Zinc-63 ....................................
    [Show full text]