Adaptations of Guest and Host in Expanded Self-Assembled Capsules

Total Page:16

File Type:pdf, Size:1020Kb

Adaptations of Guest and Host in Expanded Self-Assembled Capsules Adaptations of guest and host in expanded self-assembled capsules Dariush Ajami and Julius Rebek, Jr.* The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute MB-26, 10550 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Julius Rebek, Jr., August 23, 2007 (sent for review August 2, 2007) Reversible encapsulation complexes create spaces where two or more molecules can be temporarily isolated. When the mobility of encapsulated molecules is restricted, different arrangements in space are possible, and new forms of isomerism (‘‘social isomer- ism’’) are created: the orientation of one encapsulated molecule influences that of the other in the confined space. Expansion of a capsule’s length is possible through addition of small-molecule spacer elements. The expanded capsules have dimensions that permit the observation of social isomerism of two identical guests, and they adopt arrangements that properly fill the host’s space. The host also can adapt to longer guests by incorporating addi- tional spacers, much as protein modules are added to a viral capsid in response to larger genomes. Arachidonic and related fatty acid derivatives act in this way to induce the assembly of further extended capsules having sufficient length to accommodate them. encapsulation ͉ self-assembly ͉ social isomers ncapsulation complexes are synthetic, self-assembled hosts Ethat more or less completely surround their guest molecules. They are dynamic and form reversibly in solution with lifetimes ranging from milliseconds to days. The capsules isolate mole- cules from the bulk solution, and they reveal behaviors that cannot be seen otherwise. They have become a tool of modern Fig. 1. The self-assembled cylindrical capule. (Upper) Chemical structure of physical organic chemistry (1). For example, cylindrical host 1.1 the cavitand component and calculated structure of the capsule 1.1 with (Fig. 1) self-assembles only in the presence of suitable guests to peripheral alkyl groups removed. (Lower) Cartoons of the capsule demon- give encapsulation complexes (2–4). Combinations of different strating the social isomers of benzene with p-ethyl toluene. guests (5) inside this capsule have allowed its use as a reaction chamber (6), a chiral receptor (7), and a space where single- molecule solvation can be observed (8). Elsewhere, reversible of the space (16). This matching of host space and guest size encapsulation complexes have been used to stabilize reactive drives much encapsulation and is especially good for arranging intermediates (9, 10) and even transition states (11, 12) as well bimolecular reactions inside (17, 18). It lies at the heart of the as to alter the course of reactions in the limited quarters (13). studies reported here. New forms of stereochemistry also have emerged from coen- Capsule 1.1 reversibly incorporates glycoluril spacers 2 (Fig. 2) capsulation studies (14). For example, with benzene and p-ethyl to give an expanded assembly 1.24.1 with suitable guests (19). toluene, two complexes coexist (Fig. 1). The two molecules are Four glycoluril spacers were added and increased the cavity’s too large to slip past each other, and the p-ethyl toluene is too volume by Ϸ200 Å3 and its length by Ϸ7 Å. A number of longer long to tumble freely while inside the capsule. Either of these alkanes were encapsulated in this host assembly, but the ex- motions could interconvert the complexes, but they are slow on panded capsule also offered broadened possibilities for isomer- the NMR time scale and separate spectra are seen for the two ism and accommodated other guests that we elaborate on here. isomers. These ‘‘social isomers’’ are different arrangements in The results indicate that highly complex molecular assemblies space that arise from the interactions of at least two encapsulated can emerge from only a few modules acting as hosts and guests molecules. They also are constitutional isomers, but mechanical (20, 21). barriers hold these arrays in place rather than covalent bond ‘‘connectedness.’’ Accordingly, the term supramolecular diaste- Results reomers better describes the relationships. This stereoisomerism Simple p-disubstituted benzene derivatives are bound in 1.24.1, is related to the carceroisomerism (15) observed in covalently and the NMR spectra of p-xylene and p-diethyl benzene show bound capsules with one guest. complexes of high symmetry with two guests inside. The spec- The self-assembly of the benzene/p-ethyl toluene pair owes its stability to the optimal filling of the capsule’s space. Two benzene molecules can assemble the capsule as guests in that Author contributions: D.A. performed research; and D.A. and J.R. wrote the paper. solvent and fill 41% of the space. With p-ethyl toluene, one The authors declare no conflict of interest. molecule fills only 33% of the space, but two molecules are too *To whom correspondence should be addressed. E-mail: [email protected]. long to be accommodated in the cavity. Accordingly, p-ethyl This article contains supporting information online at www.pnas.org/cgi/content/full/ toluene can be combined with a number of coencapsulation 0707759104/DC1. partners, of which the benzene is at near optimum at filling 53% © 2007 by The National Academy of Sciences of the USA 16000–16003 ͉ PNAS ͉ October 9, 2007 ͉ vol. 104 ͉ no. 41 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0707759104 Downloaded by guest on September 25, 2021 Fig. 2. Formula of the glycoluril 2 spacer and semiempirical energy- minimized structure of the expanded capsule 1.24.1. Both enantiomers and hydrogen bonds are shown, but peripheral alkyl and aryl groups have been removed for viewing clarity. The cartoon schematic used elsewhere in the article is shown on the right. 1 Fig. 4. Upfield region of the H-NMR spectra (600 MHz, mesitylene-d12)of p p-cymene encapsulated in 1.24.1 at various temperatures. The broadening at trum of encapsulated -ethyl toluene, however, shows that three higher temperatures is caused by interconversion of the two enantiomeric species are present (Fig. 3b Left). These are social isomers; they arrays of the glycoluril spacers in the capsules; the social isomers do not reveal that there are several ways to fill the space, but what rules interconvert on the NMR time scale. govern the arrangements? In the most favorable isomer, ethyl groups appear in the narrower center of the capsule, whereas the centrally positioned The chiral nature of the assembly is reflected in the doubling of methyl of the tolyl group penetrates deeper into the tapered the signals of the isopropyl group: its methyls are diastereotopic. At resorcinarene ends. This arrangement apparently creates stron- first glance, the asymmetric elements are far from the cavity’s ger COH/␲ interactions (22, 23) at the ends of the capsule than end, but the chiral arrangement of the glycolurils at the center does a (rotating) ethyl group. Surprisingly, the unsymmetrical of the assembly can shift the eight imide walls in a manner that isomer, although favored statistically, is the highest-energy form is transmitted effectively by the very rigidity of those walls (24). of the three arrangements. The energetic differences between At higher temperatures, the chiral arrangement of the glycolurils social isomers are small (⌬G° varies from Ϸ0.3 to 1.5 kcal/mol) begin to interconvert, and the signals of the diastereotopic and reflect not only the better ‘‘fit’’ in the space but also the methyls of the cymene guest coalesce. interactions of the coencapsulated molecules. Simple alkanes that are too long to tumble freely in the capsule CHEMISTRY The social isomerism of two p-cymenes provided a surprise: a also show that multiple arrangements are accommodated. Fig. 5 higher stability for the isomer with the methyl toward tapered shows the spectra of 2-methyl heptane and 2-methyl hexane. The ends of the cavitand (as for p-ethyl toluene) was expected, but former shows two of the three possible isomers, whereas the this isomer was not detectable. Instead, the unsymmetrical latter shows only one in the capsule at room temperature. Unlike isomer was favored 2 to 1 over the isomer with both isopropyl alkyl aryls, alkanes with increased rotational degrees of freedom groups near the tapered ends (Fig. 4). Apparently, two isopro- prefer to keep their bulky side in the tapered end of capsule to pyls at the tapered ends or at the constricted middle of the minimize steric clashes in the middle. capsule create steric clashes and do not fit the space comfortably. The seams of hydrogen bonds at the center of the capsular assembly favor polar guests, and this preference was evident in the spectra of N,N-dimethyl-p-toluidine, alkyl anisoles, and aryl alkyl halides. In each case, the major (if not the exclusive) social isomer showed the heteroatoms near the glycolurils [Fig. 6 and supporting information (SI)]. This preference is reinforced by the constricted center of the assembly, which is too narrow to Fig. 3. Encapsulation of p-dialkylated benzenes. (Left) Downfield and up- 1 field regions of the H-NMR spectra (600 MHz, mesitylene-d12)ofp-xylene (a), 1 p-ethyl toluene (b), and p-diethyl benzene (c) encapsulated in 1.24.1.(Right) Fig. 5. Upfield region of the H-NMR spectra (600 MHz, mesitylene-d12)of The social isomers of p-ethyl toluene related to the spectra in b Left. 2-methyl heptane and 2-methyl hexane in 1.24.1. Ajami and Rebek PNAS ͉ October 9, 2007 ͉ vol. 104 ͉ no. 41 ͉ 16001 Downloaded by guest on September 25, 2021 Fig. 8. Structures of natural products and derivatives, including arachidonic acid, 4a; anandamide, 4b; oleamide, 5a; an omega-3 ester, 6; and palmitic ethanolamide, 7. All are encapsulated in 1.28.1.
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • United States Patent (19) (11) 3,855,105 Diveley (45) Dec
    United States Patent (19) (11) 3,855,105 Diveley (45) Dec. 17, 1974 54 THOPHOSPHORYLATING ASATURATED 3,284,540 1 1/1966 D'Alelio.............................. 260/869 HYDROCARBON GROUP 75 Inventor: William R. Diveley, Oakwood Hills, Primary Examiner-Benjamin R. Padgett Del. Attorney, Agent, or Firm-George H. Hopkins 73 Assignee: Hercules incorporated, Wilmington, (57) ABSTRACT Del. Disclosed is a process for making certain organo thio 22) Filed: June 16, 1969 phosphates and dithiophosphates, a number of which 21 ) Appl. No.: 833,741 have utility as insecticides. The process comprises ef fecting by free radical catalysis at about 0-150°C. re Related U.S. Application Data action of an organic compound characterized by a sat (63) Continuation-in-part of Ser. No. 514,652, Dec. 17, urated carbon with at least one hydrogen replaceable 1965, abandoned. under free radical conditions, and halo-thiophosphate of the formula: 52 U.S. C. ..... 204/162 R, 204/158 R, 260/329 R, 260/329 P, 260/340.6, 260/347.2, 260/958, 7, OR . 1 / 260/963, 260/971 X-S-P (51) Int. Cl................................................ B01j 1/10 N 58 Field of Search ............ 204/162, 158; 260/329, OR 260/340.6, 347.2,958, 963,971 wherein X is a halo radical, Z is selected from the (56) References Cited group consisting of the oxo and thioxo radicals, and R UNITED STATES PATENTS and R' are organic radicals. 3,256,370 6/1966 Fitch et al........................... 260/972 24 Claims, No Drawings 3,855, 105 2 THIOPHOSPHORYLATING ASATURATED rated carbons, each of which has one or more hydrogen HYDROCARBON GROUP radicals replaceable under free radical conditions.
    [Show full text]
  • Friedel-Crafts Alkylation of Aromatic Compounds with Phosphorus Estersla B
    ALKYLATION OF AROMATIC COMPOUNDS WITH PHOSPHORUS ESTERS 1339 Analyse der Verbindungen: Die Einlagerungsverbin- Kalium-titandisulfid: Kalium 21,0%, Titan 33, 8%, dungen wurden vorsichtig mit HN03 aufgeschlossen. Schwefel 44,2%, Summe: 99,0%. Zusammen- Das im Fall der Wolframverbindungen dabei ausfal- setzung: Ko^TiSj,^ . lende W03 wurde alkalisch gelöst. Wolfram und Mo- Reaktionsprodukt von WS* mit Li-naphthalid (Uber- lybdän wurden als Oxinat, Titan als TiOa und Schwe- schuß) : Lithium 9,8%, Wolfram 66,3%, Schwefel fel als BaS04 bestimmt. Die Bestimmung der Alkali- 23,5%, Summe: 99,6%. Verhältnis 1 W : 2 Lili95S. metalle erfolgte flammenphotometrisch. Reaktionsprodukt WS2 mit Na-naphthalid (Überschuß) : Kalium-wolf ramdisulfid: Präparat I: Kalium 8,3%, Natrium 26,9%, Wolfram 53,1%, Schwefel 18,8%, Wolfram 66,9%, Schwefel 23,7%, Summe: 98,9%. Summe: 98,8%. Verhältnis: 1 W : 2 Na2,0S. Zusammensetzung: K0.59WS2)0 . Präparat II: Kalium 8,1%, Wolfram 67,1%, Schwe- fel 23,4%, Summe: 98,6%. Zusammensetzung: K0.57WS2,O . Kalium-molybdändisulfid: Kalium 10,86%, Molybdän Wir danken der Deutschen Forschungsgemeinschaft 53,6%, Sdiwefel 35,5%, Summe: 99,9%. Zusam- und dem Fonds der Chemie für die Unterstützung die- mensetzung: K0!49MoS1?98 . ser Arbeit. 1 Auszug aus der Dissertation E. BAYER. Tübingen 1970. 5 T. E. HOVEN-ESCH U. J. SMID, J. Amer. chem. Soc. 87, 669 2 W. RÜDORFF, Chimia [Zürich] 19,489 [1965], [1965]. 3 H. M. SICK, Dissertation Tübingen 1959. 6 W. BILTZ, P. EHRLICH U. M. MEISEL, Z. anorg. allg. Chem. 4 C. STEIN. J. POULENARD, L. BONNETAIN U. J. GOLE, C. R. 234,97 [1934], hebd.
    [Show full text]
  • A Particular Focus on P-Cymene
    materials Review Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene Anna Marchese 1, Carla Renata Arciola 2,3, Ramona Barbieri 1, Ana Sanches Silva 4,5, Seyed Fazel Nabavi 6, Arold Jorel Tsetegho Sokeng 7, Morteza Izadi 8, Nematollah Jonaidi Jafari 8, Ipek Suntar 9, Maria Daglia 7,* ID and Seyed Mohammad Nabavi 6,* 1 Sezione di Microbiologia DISC-IRCCS San Martino-IST University of Genoa, 16132 Genoa, Italy; [email protected] (A.M.); [email protected] (R.B.) 2 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy; [email protected] 3 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy 4 National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4480 Vila do Conde, Portugal; [email protected] 5 Center for Study in Animal Science (CECA), ICETA, University of Oporto, 4051-401 Oporto, Portugal 6 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 19395-5487, Iran; [email protected] 7 Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; [email protected] 8 Health Research Center, Baqiyatallah University of Medical Sciences, Tehran 19395-5487, Iran; [email protected] (M.I.); [email protected] (N.J.J.) 9 Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey; [email protected] * Correspondence: [email protected] (M.D.); [email protected] (S.M.N.); Tel./Fax: +98-21-88617712 (M.D.); +39-0382-987388 (S.M.N.) Received: 25 July 2017; Accepted: 11 August 2017; Published: 15 August 2017 Abstract: p-Cymene [1-methyl-4-(1-methylethyl)-benzene] is a monoterpene found in over 100 plant species used for medicine and food purposes.
    [Show full text]
  • Sources of Non-Methane Hydrocarbons in Surface Air in Delhi, India” Gareth J
    Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2020 Supplement to “Sources of non-methane hydrocarbons in surface air in Delhi, India” Gareth J. Stewart, a Beth S. Nelson, a Will S. Drysdale, a W. Joe F. Acton, b Adam R. Vaughan, a James R. Hopkins, a,c Rachel E. Dunmore, a C. Nicholas Hewitt, b Eiko Nemitz, d Neil Mullinger, d Ben Langford, d Shivani, e Ernesto R. Villegas, f Ranu Gadi, e Andrew R. Rickard, a,c James D. Lee a,c and Jacqueline F. Hamilton. a a Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK c National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK d UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK e Indira Gandhi Delhi Technical University for Women, Kashmiri Gate, New Delhi, Delhi 110006, India f Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK ESI1 – Air quality index in Delhi Plot created with air quality information data downloaded from the US embassy, New Delhi, for 2018 using US EPA method for calculation of air quality index (AQI). 1 Figure S1. AQI for New Delhi measured at the US embassy during 2018. ESI2 – Mean, minimum and maximum mixing ratios Calculated over sample periods where both DC-GC-FID and GCxGC-FID were measuring (29/05/18 20:00 to 05/06/18 11:00 and 11/10/2018 22:00 to 27/10/18 17:00).
    [Show full text]
  • List of Dangerous Goods in Numerical Order See Volume II 3.2.2 Table
    CHAPTER 3.2 LIST OF DANGEROUS GOODS 3.2.1 Table A: List of dangerous goods in numerical order See Volume II 3.2.2 Table B: List of dangerous goods in alphabetical order See Volume II 3.2.3 Table C: List of dangerous goods accepted for carriage in tank vessels in numerical order Explanations concerning Table C: As a rule, each row of Table C of this Chapter deals with the substance(s) covered by a specific UN number or identification number. However, when substances belonging to the same UN number or identification number have different chemical properties, physical properties and/or carriage conditions, several consecutive rows may be used for that UN number or identification number. Each column of Table C is dedicated to a specific subject as indicated in the explanatory notes below. The intersection of columns and rows (cell) contains information concerning the subject treated in that column, for the substance(s) of that row: – The first four cells identify the substance(s) belonging to that row; – The following cells give the applicable special provisions, either in the form of complete information or in coded form. The codes cross-refer to detailed information that is to be found in the numbers indicated in the explanatory notes below. An empty cell means either that there is no special provision and that only the general requirements apply, or that the carriage restriction indicated in the explanatory notes is in force. The applicable general requirements are not referred to in the corresponding cells. Explanatory notes for each column: Column (1) “UN number/identification number” Contains the UN number or identification number: – of the dangerous substance if the substance has been assigned its own specific UN number or identification number, or – of the generic or n.o.s.
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]
  • United States Patent Office Patented Jan
    3,555,103 United States Patent Office Patented Jan. 12, 1971 2 3,555,103 ter yield with the formation of a smaller number of by PREPARATHON OF CYMENES products, and the fraction of the by-products which may Max Strohmeyer, Ludwigshafen (Rhine), Germany, as be used again in the reaction is higher. In the produc signor to Badische Anilin- & Soda-Fabrik Aktienge tion of p-cymene, far smaller amounts of thr difficultly sellschaft, Ludwigshafen (Rhine), Germany separable o-isomer are obtained. No Drawing. Filed July 16, 1968, Ser. No. 745,093 5 Methyldiisopropylbenzenes, preferably the 1,3,5- and Claims priority, application Germany, July 19, 1967, 1,2,4-methyldiisopropylbenzene, and toluene or mixtures 1,643,629 thereof are used as the starting materials. The aforemen Int. CI. C07c3/58, 5/22 tioned mixtures preferably contain a substance which can U.S. C. 260-672 15 Claims react in the transalkylation stage with toluene to form IO cymenes, for example triisopropylbenzene. The reaction mixture which is obtained at the end of the reaction after ABSTRACT OF THE DISCLOSURE the alkylation stage is advantageously recycled after sepa Process for the preparation of cymenes by reaction of ration of the cymenes, and is used together with fresh methyldiisopropylbenzenes with toluene and propylene in 5 starting materials as the starting mixture. If interest is two or three stages. The products of the new process centered on one specific end product only, for example are valuable starting materials for the production of plas p-cymene, any isomers formed in the reaction may be re tics materials or fibers.
    [Show full text]
  • "Hydrocarbons," In: Ullmann's Encyclopedia of Industrial Chemistry
    Article No : a13_227 Hydrocarbons KARL GRIESBAUM, Universit€at Karlsruhe (TH), Karlsruhe, Federal Republic of Germany ARNO BEHR, Henkel KGaA, Dusseldorf,€ Federal Republic of Germany DIETER BIEDENKAPP, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany HEINZ-WERNER VOGES, Huls€ Aktiengesellschaft, Marl, Federal Republic of Germany DOROTHEA GARBE, Haarmann & Reimer GmbH, Holzminden, Federal Republic of Germany CHRISTIAN PAETZ, Bayer AG, Leverkusen, Federal Republic of Germany GERD COLLIN, Ruttgerswerke€ AG, Duisburg, Federal Republic of Germany DIETER MAYER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany HARTMUT Ho€KE, Ruttgerswerke€ AG, Castrop-Rauxel, Federal Republic of Germany 1. Saturated Hydrocarbons ............ 134 3.7. Cumene ......................... 163 1.1. Physical Properties ................ 134 3.8. Diisopropylbenzenes ............... 164 1.2. Chemical Properties ............... 134 3.9. Cymenes; C4- and C5-Alkylaromatic 1.3. Production ....................... 134 Compounds ...................... 165 1.3.1. From Natural Gas and Petroleum . .... 135 3.10. Monoalkylbenzenes with Alkyl Groups 1.3.2. From Coal and Coal-Derived Products . 138 >C10 ........................... 166 1.3.3. By Synthesis and by Conversion of other 3.11. Diphenylmethane .................. 167 Hydrocarbons . .................. 139 4. Biphenyls and Polyphenyls .......... 168 1.4. Uses ............................ 140 4.1. Biphenyl......................... 168 1.5. Individual Saturated Hydrocarbons ... 142 4.2. Terphenyls......................
    [Show full text]
  • NJC Accepted Manuscript
    NJC Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/njc Page 1 of 16 PleaseNew Journal do not adjustof Chemistry margins New Journal of Chemistry PERSPECTIVE REVIEW Zeolite science and technology at Eni Giuseppe Bellussi,a Roberto Millini,b Paolo Pollesela and Carlo Peregob* Received 00th January 20xx, In the last forty years Eni laboratories have contributed to the advancement of zeolite science and technology in both the Accepted 00th January 20xx materials synthesis and characterization and the application in catalysis. This work has led to several industrial applications for selective oxidations and acid-base catalysis as well as for gas separation and water remediation. A brief review of the DOI: 10.1039/x0xx00000x main results is reported with some comments of the future perspectives for these branches of technology.
    [Show full text]
  • Research and Special Programs Admin., DOT § 172.101
    Research and Special Programs Admin., DOT § 172.101 TABLE 2 TO APPENDIX AÐRADIONUCLIDESÐ the class of the material must be determined Continued in accordance with § 173.2a of this sub- chapter. 3. This appendix contains two columns. (2)Ð (3)ÐReportable Atomic The first column, entitled ``S.M.P.'' (for se- (1)ÐRadionuclide Num- Quantity (RQ) ber Ci (TBq) vere marine pollutants), identifies whether a material is a severe marine pollutant. If the Ytterbium-169 .......................... 70 10 (.37) letters ``PP'' appear in this column for a ma- Ytterbium-175 .......................... 70 100 (3.7) terial, the material is a severe marine pol- Ytterbium-177 .......................... 70 1000 (37) lutant, otherwise it is not. The second col- Ytterbium-178 .......................... 70 1000 (37) umn, entitled ``Marine Pollutant'' , lists the Yttrium-86 ................................ 39 10 (.37) Yttrium-86m ............................. 39 1000 (37) marine pollutants. Yttrium-87 ................................ 39 10 (.37) 4. If a material not listed in this appendix Yttrium-88 ................................ 39 10 (.37) meets the criteria for a marine pollutant, as Yttrium-90 ................................ 39 10 (.37) provided in the General Introduction of the Yttrium-90m ............................. 39 100 (3.7) IMDG Code, Guidelines for the Identification Yttrium-91 ................................ 39 10 (.37) of Harmful Substances in Packaged Form, Yttrium-91m ............................. 39 1000 (37) Yttrium-92 ................................ 39 100 (3.7) the material may be transported as a marine Yttrium-93 ................................ 39 100 (3.7) pollutant in accordance with the applicable Yttrium-94 ................................ 39 1000 (37) requirements of this subchapter. Yttrium-95 ................................ 39 1000 (37) 5. If approved by the Associate Adminis- Zinc-62 ..................................... 30 100 (3.7) trator for Hazardous Materials Safety, a ma- Zinc-63 ....................................
    [Show full text]
  • Alkylation of Aromatic Substrates and Transalkylation Process
    (19) & (11) EP 2 110 368 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 21.10.2009 Bulletin 2009/43 C07C 2/66 (2006.01) C07C 6/12 (2006.01) C07C 15/073 (2006.01) C07C 15/02 (2006.01) (21) Application number: 08290392.3 (22) Date of filing: 18.04.2008 (84) Designated Contracting States: (72) Inventor: Cary, Jean-Bernard AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 76600 Le Havre (FR) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (74) Representative: Neel, Henry et al Designated Extension States: Total Petrochemicals Research Feluy AL BA MK RS Zone Industrielle C 7181 Seneffe (Feluy) (BE) (71) Applicant: Total Petrochemicals France 92047 Paris La Défense Cedex (FR) (54) Alkylation of aromatic substrates and transalkylation process (57) The present invention relates to a process for embodiment of the alkylation process the aromatic sub- the alkylation of an aromatic substrate and to a process strate is benzene and the alkylating agent in ethylene. In for the transalkylation of polyalkylated aromatic compo- an advantageous embodiment of the transalkylation nents, wherein the nitrogen containing compounds im- process the aromatic substrate is benzene and the poly- purities in the aromatic substrate feedstock and/or the alkylated aromatic component is diethylbenzene. alkylating agent feedstock are monitored in a range 15 wppb-35 wppm by dry colorimetry. In an advantageous EP 368 2 110 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 110 368 A1 2 Description verting essentially all olefinic compounds contained therein by hydrogenation; [Field of the invention] (c) contacting the thus treated aromatic-rich stream from (b) with an olefin-containing stream comprising [0001] The present invention relates to the alkylation 5 at least one olefin selected from the group consisting of aromatic substrates and related transalkylation proc- of ethylene, propylene, and butylene, wherein the ess.
    [Show full text]