The Winding Road to Discovering the Link Between Genetic Material and DNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The DNA Helix, Featured Scientist: Rosalind Franklin
Cover Story Featu red Scientist: The Rosalind DNA Franklin: Helix "Bold John R. Jungck Experimentalist" Downloaded from http://online.ucpress.edu/abt/article-pdf/46/8/430/86225/4447893.pdf by guest on 02 October 2021 On April 25th, 1953, three papers on the struc- Thus, it is disheartening to see a biographer cite ture of DNA appearing in Nature profoundly Rosalind Franklin's work as "not characterized by changed biology. Only the one by James Watson great originality of thought." This same biog- and Francis Crick still seems to receive much at- rapher, the distinguished biology historian, Robert tention. The primary authors of the other two pa- Olby, nonetheless raises the same contradictions as pers were Maurice Wilkins and Rosalind Franklin. above. He describes Franklin as a "bold experi- While The Double Helix by "honest Jim" Watson mentalist" and "a deft experimentalist, keenly ob- (1968) changed many people's perception of sci- servant and with immense capacity for taking ence and rankled many more because of the chau- pains. As a result she was able with difficult mate- vinistic treatment of "Rosy" Franklin, I shall focus rial to achieve a remarkable standard of resolution on what has been largely ignored in our apprecia- in her X-ray diagrams" (Olby 1972). tion of these scientists, especially Franklin. While Similarly, Anne Sayre (1975, p. 84) fleetingly de- one of Franklin's biographers, Anne Sayre, spends scribes Franklin's skill: "When Rosalind was con- much space defending Franklin's role in this major fronted with DNA-an amorphous substance, diffi- discovery of our century, she only briefly discusses cult to handle experimentally, tiresomely recalci- Franklin's tremendous skill as an experimentalist. -
Antony Van Leeuwenhoek, the Father of Microscope
Turkish Journal of Biochemistry – Türk Biyokimya Dergisi 2016; 41(1): 58–62 Education Sector Letter to the Editor – 93585 Emine Elif Vatanoğlu-Lutz*, Ahmet Doğan Ataman Medicine in philately: Antony Van Leeuwenhoek, the father of microscope Pullardaki tıp: Antony Van Leeuwenhoek, mikroskobun kaşifi DOI 10.1515/tjb-2016-0010 only one lens to look at blood, insects and many other Received September 16, 2015; accepted December 1, 2015 objects. He was first to describe cells and bacteria, seen through his very small microscopes with, for his time, The origin of the word microscope comes from two Greek extremely good lenses (Figure 1) [3]. words, “uikpos,” small and “okottew,” view. It has been After van Leeuwenhoek’s contribution,there were big known for over 2000 years that glass bends light. In the steps in the world of microscopes. Several technical inno- 2nd century BC, Claudius Ptolemy described a stick appear- vations made microscopes better and easier to handle, ing to bend in a pool of water, and accurately recorded the which led to microscopy becoming more and more popular angles to within half a degree. He then very accurately among scientists. An important discovery was that lenses calculated the refraction constant of water. During the combining two types of glass could reduce the chromatic 1st century,around year 100, glass had been invented and effect, with its disturbing halos resulting from differences the Romans were looking through the glass and testing in refraction of light (Figure 2) [4]. it. They experimented with different shapes of clear glass In 1830, Joseph Jackson Lister reduced the problem and one of their samples was thick in the middle and thin with spherical aberration by showing that several weak on the edges [1]. -
Discovery of DNA Structure and Function: Watson and Crick By: Leslie A
01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells). -
Nature Medicine Essay
COMMENTARY LASKER BASIC MEDICAL RESEARCH AWARD Of maize and men, or peas and people: case histories to justify plants and other model systems David Baulcombe One of the byproducts of molecular biology cork is altogether filled with air, and that air is has been support for the ‘model system’ con- perfectly enclosed in little boxes or cells distinct cept. All living organisms are based on the same from one another.”)2 (Fig. 1). Two hundred fifty genetic code, they have similar subcellular years later, Beijerinck discovered a contagium structures and they use homologous metabolic vivum fluidum in extracts of diseased tobacco pathways. So, mechanisms can be investigated plants that he later referred to as a virus3. using organisms other than those in which In contemporary science, a green alga— the knowledge will be exploited for practical Chlamydomonas reinhardtii—is a useful model benefit. Model systems are particularly use- in the analysis of kidney disease4. However, ful in the early discovery phase of a scientific in this article, I refer to the contribution of endeavor, and recent progress in biomedical plant biology to a family of mechanisms that I science has fully vindicated their use. Jacques refer to as RNA silencing. This topic has been Monod, for example, famously justified his reviewed comprehensively elsewhere5,6, so here work on a bacterial model system by stating I focus on personal experience and my view of that “what is true for Escherichia coli is also future potential from this work. true for elephants.” My fellow laureates, Victor Ambros and Gary Ruvkun, can defend the use The early history of RNA silencing in of the worm Caenorhabditis elegans as a good plants model system and so I will focus on plants. -
Rosalind Franklin, Nicole Kidman and Photograph 51
#Bio Rosalind Franklin, Nicole Kidman and Photograph 51 I must admit that when I first heard that Nicole Kidman, in establishing her career there. This and her strained Clare Sansom winner of the Best Actress Oscar for her portrayal of relationship with Wilkins have been well documented in (Birkbeck College, UK) Virginia Woolf in The Hours, was to take the role of the her biographies. Very early in the play, when Franklin had Downloaded from http://portlandpress.com/biochemist/article-pdf/37/6/45/5486/bio037060045.pdf by guest on 27 September 2021 pioneering structural biologist Rosalind Franklin in a West just arrived in London, we see Wilkins informing her that End play, I was slightly sceptical. However accustomed to she could not accompany him to the college dining room portraying brilliant minds, a blonde Australian seemed to because that was for male academics only. This seems be an odd choice for an upper-middle-class Englishwoman outrageous today, but it was a matter of course only two who was culturally, if not religiously, very much a Jew. But generations ago. Franklin’s angry response showed both I couldn’t resist the idea of a play about one of the most deeply held passion and control. Throughout the play, her crucial moments in the history of molecular biology. I polite and understated feminism and (it has to be said) her was lucky enough to acquire tickets for Anna Ziegler’s reserved and somewhat prickly character bring her into Photograph 51 at the Noel Coward Theatre, and I was not conflict with her male counterparts time after time. -
2002 President's Essay
from the 2002 Annual Report DIRECTOR’S REPORT Much has been written about the extraordinary events that took place in Cambridge, Eng - land, 50 years ago that changed biology forever. The discovery of the double-helical struc - ture of DNA ushered in an immediate future for understanding how genes are inherited, how genetic information is read, and how mutations are fixed in our genome. 2003 will ap - propriately celebrate the discovery and the stunning developments that have occurred since, not only in biology and medicine, but also in fields unanticipated by Jim Watson and Francis Crick when they proposed the double helix. DNA-based forensics is but one example, having an impact in the law to such an extent that some states are now reviewing whether capital punishment should be continued because of the possibility of irreversibly condemning the innocent. In all the writings and lore about the double-helix discovery, one of the little discussed points that struck me was the freedom that both Jim and Francis had to pursue what they felt was important, namely, the structure of DNA. Having completed graduate studies in the United States, Jim Watson went to Copenhagen to continue to become a biochemist in the hope that he might understand the gene, but he soon realized that biochemistry was not his forte. Most importantly, after hearing Maurice Wilkins talk about his early structural studies on DNA, Jim had the foresight that understanding DNA structure might help un - derstand the gene and therefore he decided to move to Cambridge, then, as now, a center of the field now known as structural biology. -
Introduction and Historical Perspective
Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful -
Quiet Debut'' of the Double Helix: a Bibliometric and Methodological
Journal of the History of Biology Ó Springer 2009 DOI 10.1007/s10739-009-9183-2 Revisiting the ‘‘Quiet Debut’’ of the Double Helix: A Bibliometric and Methodological note on the ‘‘Impact’’ of Scientific Publications YVES GINGRAS De´partement d’histoire Universite´ du Que´bec a` Montre´al C.P. 8888, Suc. Centre-Ville Montreal, QC H3C-3P8 Canada E-mail: [email protected] Abstract. The object of this paper is two-fold: first, to show that contrary to what seem to have become a widely accepted view among historians of biology, the famous 1953 first Nature paper of Watson and Crick on the structure of DNA was widely cited – as compared to the average paper of the time – on a continuous basis from the very year of its publication and over the period 1953–1970 and that the citations came from a wide array of scientific journals. A systematic analysis of the bibliometric data thus shows that Watson’s and Crick’s paper did in fact have immediate and long term impact if we define ‘‘impact’’ in terms of comparative citations with other papers of the time. In this precise sense it did not fall into ‘‘relative oblivion’’ in the scientific community. The second aim of this paper is to show, using the case of the reception of the Watson–Crick and Jacob–Monod papers as concrete examples, how large scale bibliometric data can be used in a sophisticated manner to provide information about the dynamic of the scientific field as a whole instead of limiting the analysis to a few major actors and generalizing the result to the whole community without further ado. -
Year 11 GCSE History Paper 1 – Medicine Information Booklet
Paper 1 Medicine Key topics 1 and 2 (1250-1500, 1500-1700) Year 11 GCSE History Paper 1 – Medicine Information booklet Medieval Renaissance 1250-1500 1500-1750 Enlightenment Modern 1900-present 1700-1900 Case study: WW1 1 Paper 1 Medicine Key topics 1 and 2 (1250-1500, 1500-1700) Key topic 1.1 – Causes of disease 1250-1500 At this time there were four main ideas to explain why someone might become ill. Religious reasons - The Church was very powerful at this time. People would attend church 2/3 times a week and nuns and monks would care for people if they became ill. The Church told people that the Devil could infect people with disease and the only way to get better was to pray to God. The Church also told people that God could give you a disease to test your faith in him or sometimes send a great plague to punish people for their sins. People had so much belief in the Church no-one questioned the power of the Church and many people had believed this explanation of illness for over 1,000 years. Astrology -After so many people in Britain died during the Black Death (1348-49) people began to look for new ways to explain why they became sick. At this time doctors were called physicians. They would check someone’s urine and judge if you were ill based on its colour. They also believed they could work out why disease you had by looking at where the planets were when you were born. -
A Short History of DNA Technology 1865 - Gregor Mendel the Father of Genetics
A Short History of DNA Technology 1865 - Gregor Mendel The Father of Genetics The Augustinian monastery in old Brno, Moravia 1865 - Gregor Mendel • Law of Segregation • Law of Independent Assortment • Law of Dominance 1865 1915 - T.H. Morgan Genetics of Drosophila • Short generation time • Easy to maintain • Only 4 pairs of chromosomes 1865 1915 - T.H. Morgan •Genes located on chromosomes •Sex-linked inheritance wild type mutant •Gene linkage 0 •Recombination long aristae short aristae •Genetic mapping gray black body 48.5 body (cross-over maps) 57.5 red eyes cinnabar eyes 67.0 normal wings vestigial wings 104.5 red eyes brown eyes 1865 1928 - Frederick Griffith “Rough” colonies “Smooth” colonies Transformation of Streptococcus pneumoniae Living Living Heat killed Heat killed S cells mixed S cells R cells S cells with living R cells capsule Living S cells in blood Bacterial sample from dead mouse Strain Injection Results 1865 Beadle & Tatum - 1941 One Gene - One Enzyme Hypothesis Neurospora crassa Ascus Ascospores placed X-rays Fruiting on complete body medium All grow Minimal + amino acids No growth Minimal Minimal + vitamins in mutants Fragments placed on minimal medium Minimal plus: Mutant deficient in enzyme that synthesizes arginine Cys Glu Arg Lys His 1865 Beadle & Tatum - 1941 Gene A Gene B Gene C Minimal Medium + Citruline + Arginine + Ornithine Wild type PrecursorEnz A OrnithineEnz B CitrulineEnz C Arginine Metabolic block Class I Precursor OrnithineEnz B CitrulineEnz C Arginine Mutants Class II Mutants PrecursorEnz A Ornithine -
DNA: the Timeline and Evidence of Discovery
1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur. -
The History of Biochemistry
ISSN 2409-4943. Ukr. Biochem. J., 2019, Vol. 91, N 1 THES HHISI TORY OF BBIOCHEMISIOCHEMISTRY УДК 577.12 + 577.23 doi: https://doi.org/10.15407/ubj91.01.108 Внесок лауреатіВ нобеліВської премії В розВиток динамічної біохімії та біоенергетики. е. бухнер, а. коссель, р. Вільштеттер, о. мейєргоф, а. хілл, о. Варбург, а. сент-дьєрді В. М. ДанилоВа, Р. П. ВиногРаДоВа, С. В. КоМіСаРенКо і нститут біохімії ім. о. В. Палладіна НАН України, Київ; e-mail: [email protected] отримано: 29 листопада 2018; затверджено: 13 грудня 2018 Дякуючи геніальним відкриттям нобелівських лауреатів першої половини ХХ ст. – е. Бухнера, а. Косселя, Р. Вільштеттера, о. Мейєргофа, а. Хілла, о. Варбурга, а. Сент-Дьєрді, сьогодні ми маємо уявлення про механізм перетворення і окислення органічних речовин в живих організмах. В статті представлено аналіз творчої діяльності цих геніїв експерименту і людської думки, які через розшифрування основних шляхів перетворення вуглеводів і енергії в живих організмах заклали основи динамічної біохімії та біоенергетики (одного з розділів біохімічної науки). К л ю ч о в і с л о в а: е. Бухнер, а. Коссель, Р. Вільштеттер, о. Мейєргоф, а. Хілл, о. Варбург, а. Сент- Дьєрді, зимаза, ензими, динамічна біохімія, біоенергетика. априкінці XIX ст. дослідники вже що окислюються. Перетворення органічних зрозуміли, що між початковими і речовин у живих організмах відбувається без Н кінцевими продуктами перетворень підвищення температури і за фізіологічних складних органічних сполук мають утворю- умов завдяки участі в реакціях біологічних ватись проміжні компоненти. Так, протеїни, каталізаторів – ензимів. вуглеводи і жири не відразу утворюють дво- Але це не було відомо наприкінці ХІХ – на окис вуглецю і воду; в процесі їх перетворення початку ХХ ст.