WATER and LIFE on MARS Learning Objectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OCEANS on MARS. J. W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA (James Head [email protected])
Workshop on Mars 2001 2541.pdf OCEANS ON MARS. J. W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA ([email protected]). Introduction: Understanding water, and its state, mapped contacts are ancient shorelines, then they distribution and history on Mars, is one of the most should also represent the margins of an equipotential fundamental goals of the Mars exploration program. surface, and if no vertical movement has occurred Linked to this goal are the questions of the formation subsequent to their formation, the elevation of each and evolution of the atmosphere, the nature of crustal contact should plot as straight lines. Preliminary accretion and destruction, the history of the cryos- analysis of the first 18 orbits showed that neither phere and the polar regions, the origin and evolution Contact plotted as a straight line, but that Contact 2 of valley networks and outflow channels, the nature of was a closer approximation than Contact 1 [5]. We the water cycle, links to SNC meteorites, and issues have now plotted data from Hiatus phase; SPO1, and associated with water and the possible presence of life SPO2, and later orbits, and produced a topographic in the history of Mars. One of the most interesting map of the northern hemisphere. Contact 1 as pres- aspects of recent discussions about water on Mars is ently observed is not a good approximation of an the question of the possible presence of large standing equipotential surface; variation in elevation ranges bodies of water on Mars in its past history. Here we over several km, an amount exceeding plausible val- outline information on recent investigatios into this ues of post-formation vertical movement. -
North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. -
Climate Histories of Mars and Venus, and the Habitability of Planets
CLIMATE HISTORIES OF MARS AND VENUS, AND THE HABITABILITY OF PLANETS In the temporal sequence that Part III of the book has ¡NTRODUCT¡ON 15.1 been following, we stand near the end of the Archean eon. Earth at the close of the Archean,2.5 billion years ago, By this point in time, the evolution of Venus and its atmo- was a world in which life had arisen and plate tectonics sphere almost certainly had diverged from that of Earth, dominated, the evolution of the crust and the recycling of and Mars was on its way to being a cold, dry world, if volatiles. Yet oxygen (Oz) still was not prevalent in the it had not already become one. This is the appropriate atmosphere, which was richer in COz than at present. In moment in geologic time, then, to consider how Earth's this last respect, Earth's atmosphere was somewhat like neighboring planets diverged so greatly in climate, and to that of its neighbors, Mars and Venus, which today retain ponder the implications for habitable planets throughout this more primitive kind of atmosphere. the cosmos. In the following chapter, we consider why Speculations on the nature of Mars and Venus were, Earth became dominated by plate tectonics, but Venus prior to the space program, heavily influenced by Earth- and Mars did not. Understanding this is part of the key centered biases and the poor quality of telescopic observa- to understanding Earth's clement climate as discussed in tions (figure 15.1). Thirty years of U.S. and Soviet robotic chapter 1.4. -
The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is. -
THE GEOMETRY of CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: a TEST of the CATASTROPHIC OUTFLOW HYPOTHESIS of FORMATION Kathryn E
THE GEOMETRY OF CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: A TEST OF THE CATASTROPHIC OUTFLOW HYPOTHESIS OF FORMATION Kathryn E. Fishbaugh1 and James W. Head III1, 1Brown University Box 1846, Providence, RI 02912, [email protected], [email protected] Introduction slumped from the scarp. The profile then drops off, becoming a scarp Chasma Boreale is a large reentrant in the northern polar layered de- with a slope of about 9°. Below the scarp, the surface is smoother, and posits of Mars. The Chasma transects the spiraling troughs which char- beyond this lie dunes which are not visible in Fig. 3a. acterize the polar layered terrain. The origin of Chasma Boreale remains Discussion a subject of controversy. Clifford [1] proposed that the Chasma was Chasma Boreale exhibits some features similar to those associated carved as a result of a jökulhlaup triggered by either breach of a crater with terrestrial jökulhlaup events. Single flood events on Earth show a containing basal meltwater or by basal melting due to a hot spot beneath variety of flood conditions, and outburst floods also exhibit several flood the cap. Benito et al. [2] suggest an origin in which catastrophic outflow peaks [5] which could explain the irregular nature of the Chasma floor, is triggered by sapping caused by a tectono-thermal event. A similar the discontinuity of terracing, and the non-uniform profile shape. The origin is proposed for Chasma Australe in the Martian southern polar asymmetry of the floor at the base of the walls in (Fig. 2 b) could be due cap [3]. -
Oceanography and Canadian Atlantic Waters
! 1 Oceanography and Canadian Atlantic Waters By H. B. HACHEY Fisheries Research Board oj Canada PUBLISHED BY THE FISHERIES RESEARCH BOARD OF CANADA UNDER THE CONTROL OF THE HONOURABLE THE MINISTER OF FISHERIES OTTAWA, 1961 rice $1.50 cOl AN. OCEAN. AT SUN.RISE I� "And I stood serene and peaceful In the quiet morning hush Gazing eastward o'er the ocean As the Master plied his brush." ( A pologies to Boutilier) BULLETIN No. 134 Oceanograph:r and Canadian .L4.tlantic Waters By H. B. HACHEY Fisheries Research Board oj Canada PUBLISHED BY THE FISHERIES RESEARCH BOARD OF CANADA UNDER THE CONTROL OF THE HONOURABLE THE MINISTER OF FISHERIES OTTAWA, 1961 W. E. RICKER N. M. CARTER Editors ROGER DUHAMEL, F.R.S.C. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTA WA, 1962 94-134 Price $1.50 Cat. No. Fs 11 BULLETINS OF THE FISHERIES RESEARCH BOARD OF CANADA are published from time to time to present popular and scientific information concerning fishes and some other aquatic animals; their environment and the biology of their stocks ; means of capture; and the handling , processing and utilizing of fish and fishery products. In addition, the Board publishes the following : An ANNUAL REPORT of the work carried on under the direction of the Board. The JOURNAL OF THE FISHERIES RESEARCH BOARD OF CANADA, containing the results of scientific investigations. ATLANTIC PROGRESS REPORTS, consisting of brief articles on investigations at the Atlantic stations of the Board. PACIFIC PROGRESS REPORTS, consisting of brief articles on investigations at the Pacific stations of the Board. -
The Surface of Mars Michael H. Carr Index More Information
Cambridge University Press 978-0-521-87201-0 - The Surface of Mars Michael H. Carr Index More information Index Accretion 277 Areocentric longitude Sun 2, 3 Acheron Fossae 167 Ares Vallis 114, 116, 117, 231 Acid fogs 237 Argyre 5, 27, 159, 160, 181 Acidalia Planitia 116 floor elevation 158 part of low around Tharsis 85 floor Hesperian in age 158 Admittance 84 lake 156–8 African Rift Valleys 95 Arsia Mons 46–9, 188 Ages absolute 15, 23 summit caldera 46 Ages, relative, by remote sensing 14, 23 Dikes 47 Alases 176 magma supply rate 51 Alba Patera 2, 17, 48, 54–7, 92, 132, 136 Arsinoes Chaos 115, 117 low slopes 54 Ascreus Mons 46, 49, 51 flank fractures 54 summit caldera 49 fracture ring 54 flank vents 49 dikes 55 rounded terraces 50 pit craters 55, 56, 88 Asteroids 24 sheet flows 55, 56 Astronomical unit 1, 2 Tube-fed flows 55, 56 Athabasca Vallis 59, 65, 122, 125, 126 lava ridges 55 Atlantis Chaos 151 dilatational faults 55 Atmosphere collapse 262 channels 56, 57 Atmosphere, chemical composition 17 pyroclastic deposits 56 circulation 8 graben 56, 84, 86 convective boundary layer 9 profile 54 CO2 retention 260 Albedo 1, 9, 193 early Mars 263, 271 Albor Tholus 60 eddies 8 ALH84001 20, 21, 78, 267, 273–4, 277 isotopic composition 17 Alpha Particle X-ray Spectrometer 232 mass 16 Alpha Proton-ray Spectrometer 231 meridional flow 1 Alpheus Colles 160 pressure variations and range 5, 16 AlQahira 122 temperatures 6–8 Amazonian 277 scale height 5, 16 Amazonis Planitia 45, 64, 161, 195 water content 11 flows 66, 68 column water abundance 174 low -
Extraterrestrial Geology Issue
Lite EXTRAT E RR E STRIAL GE OLO G Y ISSU E SPRING 2010 ISSUE 27 The Solar System. This illustration shows the eight planets and three of the five named dwarf planets in order of increasing distance from the Sun, although the distances between them are not to scale. The sizes of the bodies are shown relative to each other, and the colors are approximately natural. Image modified from NASA/JPL. IN TH I S ISSUE ... Extraterrestrial Geology Classroom Activity: Impact Craters • Celestial Crossword Puzzle Is There Life Beyond Earth? Meteorites in Antarctica Why Can’t I See the Milky Way? Most Wanted Mineral: Jarosite • Through the Hand Lens New Mexico’s Enchanting Geology • Short Items of Interest NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES A DIVISION OF NEW MEXICO TECH EXTRAT E RR E STRIAL GE OLO G Y Douglas Bland The surface of the planet we live on was created by geologic Many factors affect the appearance, characteristics, and processes, resulting in mountains, valleys, plains, volcanoes, geology of a body in space. Size, composition, temperature, an ocean basins, and every other landform around us. Geology atmosphere (or lack of it), and proximity to other bodies are affects the climate, concentrates energy and mineral resources just a few. Through images and data gathered by telescopes, in Earth’s crust, and impacts the beautiful landscapes outside satellites orbiting Earth, and spacecraft sent into deep space, the window. The surface of Earth is constantly changing due it has become obvious that the other planets and their moons to the relentless effects of plate tectonics that move continents look very different from Earth, and there is a tremendous and create and destroy oceans. -
Geology of the Syrtis Major/Isidis Region of Mars: New Results from Mola, Moc, and Themis
Sixth International Conference on Mars (2003) 3061.pdf GEOLOGY OF THE SYRTIS MAJOR/ISIDIS REGION OF MARS: NEW RESULTS FROM MOLA, MOC, AND THEMIS H. Hiesinger, J. W. Head III Department of Geological Sciences, Brown University, Providence, RI 02912, [email protected] Introduction: The motivation of our study is to character- are easily detected and work of Head et al. [2002] and ize the Isidis basin in terms of topography and morphology, Ivanov and Head [2003] showed that Hesperian ridged to investigate the origin of its geologic units, to study the plains underlie the sediments of the Vastitas Borealis for- geologic history and evolution of the basin, and to provide mation in the northern lowlands and in the Isidis basin. additional geologic context for the Beagle lander. The Isi- Alternatively, Tanaka et al. [2001c] proposed that the depo- dis basin is important in that it is one of the major impact sition of up to 2-3 km thick sediments of the Vastitas Bore- basins on Mars. Although not part of the northern lowlands, alis Formation in the northern lowlands resulted in exten- it contains deposits of the Vastitas Borealis Formation. sive deformation of the lithosphere and the tilt of the Isidis Syrtis Major is a large volcanic complex immediately west floor. The origin of these deposits could be sedimentation of the Isidis basin and it has been observed that lavas from from a northpolar ocean as proposed by Parker et al. [1989, Syrtis Major and deposits in the Isidis basin (i.e. the Vasti- 1993] or from large-scale CO2-charged debris-flows as tas Borealis Formation) have complex stratigraphic rela- proposed by Tanaka et al. -
General Index Vols. XLI-L, Third Series
GENERAL INDEX OF VOLUMES XLI-L OF THE THIRD SERIES. WInthe references to volumes xli to I, only the numerals i to ir we given. NOTE.-The names of mineral8 nre inaerted under the head ol' ~~IBERALB:all ohitllary notices are referred to under OBITUARY. Under the heads BO'PANY,CHK~I~TRY, OEOLO~Y, Roo~s,the refereuces to the topics in these department8 are grouped together; in many cases, the same references appear also elsewhere. Alabama, geological survey, see GEOL. REPORTSand SURVEYS. Abbe, C., atmospheric radiation of Industrial and Scientific Society, heat, iii, 364 ; RIechnnics of the i. 267. Earth's Atmosphere, v, 442. Alnska, expedition to, Russell, ii, 171. Aberration, Rayleigh, iii, 432. Albirnpean studies, Uhler, iv, 333. Absorption by alum, Hutchins, iii, Alps, section of, Rothpletz, vii, 482. 526--. Alternating currents. Bedell and Cre- Absorption fipectra, Julius, v, 254. hore, v, 435 ; reronance analysis, ilcadeiny of Sciences, French, ix, 328. Pupin, viii, 379, 473. academy, National, meeting at Al- Altitudes in the United States, dic- bany, vi, 483: Baltimore, iv, ,504 : tionary of, Gannett, iv. 262. New Haven, viii, 513 ; New York, Alum crystals, anomalies in the ii. 523: Washington, i, 521, iii, growth, JIiers, viii, 350. 441, v, 527, vii, 484, ix, 428. Aluminum, Tvave length of ultra-violet on electrical measurements, ix, lines of, Runge, 1, 71. 236, 316. American Association of Chemists, i, Texas, Transactions, v, 78. 927 . Acoustics, rrsearchesin, RIayer, vii, 1. Geological Society, see GEOL. Acton, E. H., Practical physiology of SOCIETYof AMERICA. plants, ix, 77. Nuseu~nof Sat. Hist., bulletin, Adams, F. -
Bedform Migration on Mars: Current Results and Future Plans
Aeolian Research xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Review Article Bedform migration on Mars: Current results and future plans ⇑ Nathan Bridges a, , Paul Geissler b, Simone Silvestro c, Maria Banks d a Johns Hopkins University, Applied Physics Laboratory, 200-W230, 11100 Johns Hopkins Road, Laurel, MD 20723, USA b US Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, AZ 86001-1698, USA c SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043, USA d Center for Earth and Planetary Studies, Smithsonian National Air and Space Museum, Washington, DC 20013-7012, USA article info abstract Article history: With the advent of high resolution imaging, bedform motion can now be tracked on the Martian surface. Received 30 July 2012 HiRISE data, with a pixel scale as fine as 25 cm, shows displacements of sand patches, dunes, and ripples Revised 19 February 2013 up to several meters per Earth year, demonstrating that significant landscape modification occurs in the Accepted 19 February 2013 current environment. This seems to consistently occur in the north polar erg, with variable activity at Available online xxxx other latitudes. Volumetric dune and ripple changes indicate sand fluxes up to several cubic meters per meter per year, similar to that found in some dune fields on Earth. All ‘‘transverse aeolian ridges’’ Keywords: are immobile. There is no relationship between bedform activity and coarse-scale global circulation mod- Mars els, indicating that finer scale topography and wind gusts, combined with the predicted low impact Dunes Ripples threshold on Mars, are the primary drivers. -
The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is.