Oceanography and Canadian Atlantic Waters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OCEANS on MARS. J. W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA (James Head [email protected])
Workshop on Mars 2001 2541.pdf OCEANS ON MARS. J. W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA ([email protected]). Introduction: Understanding water, and its state, mapped contacts are ancient shorelines, then they distribution and history on Mars, is one of the most should also represent the margins of an equipotential fundamental goals of the Mars exploration program. surface, and if no vertical movement has occurred Linked to this goal are the questions of the formation subsequent to their formation, the elevation of each and evolution of the atmosphere, the nature of crustal contact should plot as straight lines. Preliminary accretion and destruction, the history of the cryos- analysis of the first 18 orbits showed that neither phere and the polar regions, the origin and evolution Contact plotted as a straight line, but that Contact 2 of valley networks and outflow channels, the nature of was a closer approximation than Contact 1 [5]. We the water cycle, links to SNC meteorites, and issues have now plotted data from Hiatus phase; SPO1, and associated with water and the possible presence of life SPO2, and later orbits, and produced a topographic in the history of Mars. One of the most interesting map of the northern hemisphere. Contact 1 as pres- aspects of recent discussions about water on Mars is ently observed is not a good approximation of an the question of the possible presence of large standing equipotential surface; variation in elevation ranges bodies of water on Mars in its past history. Here we over several km, an amount exceeding plausible val- outline information on recent investigatios into this ues of post-formation vertical movement. -
15 Canadian High Arctic-North Greenland
15/18: LME FACTSHEET SERIES CANADIAN HIGH ARCTIC-NORTH GREENLAND LME tic LMEs Arc CANADIAN HIGH ARCTIC-NORTH GREENLAND LME MAP 18 of Central Map Arctic Ocean LME North Pole Ellesmere Island Iceland Greenland 15 "1 ARCTIC LMEs Large ! Marine Ecosystems (LMEs) are defined as regions of work of the ArcNc Council in developing and promoNng the ocean space of 200,000 km² or greater, that encompass Ecosystem Approach to management of the ArcNc marine coastal areas from river basins and estuaries to the outer environment. margins of a conNnental shelf or the seaward extent of a predominant coastal current. LMEs are defined by ecological Joint EA Expert group criteria, including bathymetry, hydrography, producNvity, and PAME established an Ecosystem Approach to Management tropically linked populaNons. PAME developed a map expert group in 2011 with the parNcipaNon of other ArcNc delineaNng 17 ArcNc Large Marine Ecosystems (ArcNc LME's) Council working groups (AMAP, CAFF and SDWG). This joint in the marine waters of the ArcNc and adjacent seas in 2006. Ecosystem Approach Expert Group (EA-EG) has developed a In a consultaNve process including agencies of ArcNc Council framework for EA implementaNon where the first step is member states and other ArcNc Council working groups, the idenNficaNon of the ecosystem to be managed. IdenNfying ArcNc LME map was revised in 2012 to include 18 ArcNc the ArcNc LMEs represents this first step. LMEs. This is the current map of ArcNc LMEs used in the This factsheet is one of 18 in a series of the ArcCc LMEs. OVERVIEW: CANADIAN HIGH ARCTIC-NORTH GREENLAND LME The Canadian High Arcc-North Greenland LME (CAA) consists of the northernmost and high arcc part of Canada along with the adjacent part of North Greenland. -
North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. -
Arctic Report Card 2009
October 2009 Citing the complete report: Richter-Menge, J., and J.E. Overland, Eds., 2009: Arctic Report Card 2009, http://www.arctic.noaa.gov/reportcard. Citing an essay (example): Perovich, D., R. Kwok, W. Meier, S. V. Nghiem, and J. Richter-Menge, 2009: Sea Ice Cover [in Arctic Report Card 2009], http://www.arctic.noaa.gov/reportcard. Authors and Affiliations I. Ashik, Arctic and Antarctic Research Institute, St. Petersburg, Russia L.-S. Bai, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio R. Benson, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio U. S. Bhatt, Geophysical Institute, University of Alaska–Fairbanks, Fairbanks, Alaska I. Bhattacharya, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio J. E. Box, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio D. H. Bromwich, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio R. Brown, Climate Research Division, Environment Canada J. Cappelen, Danish Meteorological Institute, Copenhagen, Denmark E. Carmack, Institute of Ocean Sciences, Sidney, Canada B. Collen, Institute of Zoology, Zoological Society of London, Regent’s Park, London, UK J. E. Comiso, NASA Goddard Space Flight Center, Greenbelt, Maryland D. Decker, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio C. Derksen, Climate Research Division, Environment Canada N. DiGirolamo, Science Systems Applications Inc. and NASA Goddard Space Flight Center, Greenbelt, Maryland D. Drozdov, Earth Cryosphere Institute, Tumen, Russia B. Ebbinge, Alterra, Wageningen H. E. Epstein, University of Virginia, Charlottesville, Virginia X. Fettweis, Department of Geography, University of Liège, Liège, Belgium I. Frolov, Arctic and Antarctic Research Institute, St. -
Development of a Pan‐Arctic Monitoring Plan for Polar Bears Background Paper
CAFF Monitoring Series Report No. 1 January 2011 DEVELOPMENT OF A PAN‐ARCTIC MONITORING PLAN FOR POLAR BEARS BACKGROUND PAPER Dag Vongraven and Elizabeth Peacock ARCTIC COUNCIL DEVELOPMENT OF A PAN‐ARCTIC MONITORING PLAN FOR POLAR BEARS Acknowledgements BACKGROUND PAPER The Conservation of Arctic Flora and Fauna (CAFF) is a Working Group of the Arctic Council. Author Dag Vongraven Table of Contents CAFF Designated Agencies: Norwegian Polar Institute Foreword • Directorate for Nature Management, Trondheim, Norway Elizabeth Peacock • Environment Canada, Ottawa, Canada US Geological Survey, 1. Introduction Alaska Science Center • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) 1 1.1 Project objectives 2 • Finnish Ministry of the Environment, Helsinki, Finland Editing and layout 1.2 Definition of monitoring 2 • Icelandic Institute of Natural History, Reykjavik, Iceland Tom Barry 1.3 Adaptive management/implementation 2 • The Ministry of Domestic Affairs, Nature and Environment, Greenland 2. Review of biology and natural history • Russian Federation Ministry of Natural Resources, Moscow, Russia 2.1 Reproductive and vital rates 3 2.2 Movement/migrations 4 • Swedish Environmental Protection Agency, Stockholm, Sweden 2.3 Diet 4 • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska 2.4 Diseases, parasites and pathogens 4 CAFF Permanent Participant Organizations: 3. Polar bear subpopulations • Aleut International Association (AIA) 3.1 Distribution 5 • Arctic Athabaskan Council (AAC) 3.2 Subpopulations/management units 5 • Gwich’in Council International (GCI) 3.3 Presently delineated populations 5 3.3.1 Arctic Basin (AB) 5 • Inuit Circumpolar Conference (ICC) – Greenland, Alaska and Canada 3.3.2 Baffin Bay (BB) 6 • Russian Indigenous Peoples of the North (RAIPON) 3.3.3 Barents Sea (BS) 7 3.3.4 Chukchi Sea (CS) 7 • Saami Council 3.3.5 Davis Strait (DS) 8 This publication should be cited as: 3.3.6 East Greenland (EG) 8 Vongraven, D and Peacock, E. -
THE GEOMETRY of CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: a TEST of the CATASTROPHIC OUTFLOW HYPOTHESIS of FORMATION Kathryn E
THE GEOMETRY OF CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: A TEST OF THE CATASTROPHIC OUTFLOW HYPOTHESIS OF FORMATION Kathryn E. Fishbaugh1 and James W. Head III1, 1Brown University Box 1846, Providence, RI 02912, [email protected], [email protected] Introduction slumped from the scarp. The profile then drops off, becoming a scarp Chasma Boreale is a large reentrant in the northern polar layered de- with a slope of about 9°. Below the scarp, the surface is smoother, and posits of Mars. The Chasma transects the spiraling troughs which char- beyond this lie dunes which are not visible in Fig. 3a. acterize the polar layered terrain. The origin of Chasma Boreale remains Discussion a subject of controversy. Clifford [1] proposed that the Chasma was Chasma Boreale exhibits some features similar to those associated carved as a result of a jökulhlaup triggered by either breach of a crater with terrestrial jökulhlaup events. Single flood events on Earth show a containing basal meltwater or by basal melting due to a hot spot beneath variety of flood conditions, and outburst floods also exhibit several flood the cap. Benito et al. [2] suggest an origin in which catastrophic outflow peaks [5] which could explain the irregular nature of the Chasma floor, is triggered by sapping caused by a tectono-thermal event. A similar the discontinuity of terracing, and the non-uniform profile shape. The origin is proposed for Chasma Australe in the Martian southern polar asymmetry of the floor at the base of the walls in (Fig. 2 b) could be due cap [3]. -
Report from the PAME Workshop on Ecosystem Approach to Management
Report from the PAME Workshop on Ecosystem Approach to Management 22-23 January 2011 Tromsø, Norway Table of Content BACKGROUND .................................................................................................................................... 1 WORKSHOP PROGRAM AND PARTICIPANTS .......................................................................... 1 REVIEW AND UPDATE OF THE WORKING MAP ON ARCTIC LMES .................................. 2 CAFF FOCAL MARINE AREAS ............................................................................................................ 2 LMES AND SUBDIVISION INTO SUB-AREAS OR ECO-REGIONS ............................................................. 3 STRAIGHT LINES OR BATHYMETRIC ISOLINES? ................................................................................... 4 LME BOUNDARY ISSUES ..................................................................................................................... 5 REVISED WORKING MAP OF ARCTIC LMES ........................................................................................ 9 STATUS REPORTING FOR ARCTIC LMES ................................................................................ 10 ARCTIC COUNCIL .............................................................................................................................. 11 UNITED NATIONS .............................................................................................................................. 11 ICES (INTERNATIONAL COUNCIL FOR THE EXPLORATION -
Legend & Notes
Circumpolar Polar Bear Subpopulation Local and/or Traditional Ecological Knowledge Acquisition and Assessment Schedule Lancaster M'Clintock Northern Southern Southern Viscount Western Subpopulation: Arctic Basin Baffin Bay Barents Sea Chukchi Sea Davis Strait East Greenland Foxe Basin Gulf of Boothia Kane Basin Kara Sea Sound Laptev Sea Channel Beaufort Sea Norwegian Bay Beaufort Sea Hudson Bay Melville Sound Hudson Bay Canada, Canada, Canada, Jurisdictional sharing: All Greenland Norway, Russia Russia, US Greenland Greenland Canada Canada Greenland Russia Canada Russia Canada Canada Canada Canada, US Canada Canada Canada PBSG trend (2013): Data deficient Declining Data deficient Data deficient Stable Data deficient Stable Stable Declining Data deficient Data deficient Data deficient Increasing Stable Data deficient Declining Stable Data deficient Declining PBTC trend (2014): N/A Likely decline N/A N/A Likely increase N/A Stable Likely stable Uncertain N/A Uncertain N/A Likely increase Likely stable Uncertain Likely decline Stable Likely stable Likely stable Last survey carried out: N/A 2011-2013 2005-2007 N/A 2008-2010 1998-2000 2012-2014 1994-1997 1998-2000 2003-2006 1994-1997 2001-2006 2011-2012 2012-2014 2011 2005 Canada1, 2 1, 12, 15 2006 Greenland3 9 Nunavik portion Greenland3 9 12 2007 Canada 4 2008 Canada 4 2009 6, 13, 14 7 7 7 7 7 19 7, 10 11 2010 8, 20 8, 20 19 8, 20 2011 20 2012 20 20 5 2013 20 2014 17 18 16 2015 Canada Greenland Canada 2016 Greenland Canada 2017 Canada Canada 2018 Canada Canada 2019 2020 2021 Canada 2022 2023 2024 Canada Canada 2025 2026 2027 2028 2029 2030 LEGEND & NOTES: Existing Knowledge compilations Ongoing as of Fall 2015 Proposed Local and Traditional Ecological Knowledge Studies The Table includes Local and/or Traditional Ecological Knowledge that has been documented in reports. -
Download This Issue of the Circle
50 YEARS OF PATROLLING FOR POLAR BEAR POLAR BEARS IN MAGAINE RESEARCH CANADA'S ARCTIC 24 26 No. 1 THE 2021 CIRCLE PUBLISHED BY THE WWF ARCTIC POLAR BEARS: PROGRAMME FACING A CHANGING ARCTIC POLAR BEARS: FACING A CHANGING ARCTIC The Circle 1.2021 • EDITORIAL: MELANIE LANCASTER The Arctic is changing. Can polar bears change with it? 3 • IN BRIEF 4 • NUIANA HARDENBERG and ILUUNA SØRENSEN Our changing relationship with polar bears 6 • JON AARS Svalbard polar bears have proven themselves resourceful, but there are limits 8 • ERIC REGEHR America and Russia work together during challenging times 10 • VARVARA SEMENOVA Growing conflict between people and polar bears 12 • INFOGRAPHIC: Regional polar bear responses to Arctic sea-ice changes 14 • INTERVIEW: CAROLINE LADANOWSKI A circumpolar plan to manage polar bears 16 • MICHAEL CRISPINO Polar bears have a “refuge” in the US Arctic—for now 18 • ANDREW DEROCHER Playing the long game 20 • IAN STIRLING Combining scientific and Indigenous knowledge to conserve polar bears 24 • INTERVIEW: JAMES ENUAPIK Patrolling for polar bears in Whale Cove, Nunavut 26 • THE PICTURE 28 The Circle is published Publisher: Editor-in-chief: COVER: A two-year-old polar quarterly by the WWF WWF Arctic Programme Leanne Clare, [email protected] bear on the shore of Hudson Arctic Programme. 8th floor, 275 Slater St., Ottawa, Reproduction and quotation ON, Canada K1P 5H9 Managing editors: Bay. Photo: Andrew Derocher with appropriate credit are Sarah MacFadyen, [email protected] encouraged. Articles by Internet: www.panda.org/arctic Patti Ryan, [email protected] non-affiliated sources do ABOVE: Polar bear footprints. -
Circumpolar Wild Reindeer and Caribou Herds DRAFT for REVIEW
CircumpolarCircumpolar WildWild ReindeerReindeer andand CaribouCaribou HerdsHerds DRAFTDRAFT FORFOR REVIEWREVIEW 140°W 160°W 180° 160°E Urup ALEUTIAN ISLANDS NORTH PACIFIC OCEAN KURIL ISANDS Paramushir ALEUTIAN ISLANDS Petropavlovsk Kamchatskiy Commander Islands Bering Sea Kronotskiy Gulf r ive Gulf of Kamchatka a R k 50°N at ch NORTH PACIFIC OCEAN m Ka 40°N Sea of Okhotsk Bristol Bay KAMCHATKA PENINSULA Karaginskiy Gulf Okha ALASKA PENINSULA Tatar Strait Kodiak Gulf of Sakhalin Bethel Iliamna Lake Shelikhova Gulf P’yagina Pen. Koni Pen. Riv Homer ina er iver zh Magadan Cook Inlet R n m Pe Taygonos Pen. wi Coos Bay ok sk u Kenai K Kotlit S . F Gulf of Anadyr' Okhotsk-Kolyma Upland Kenai Peninsula o Western Arctic Wi r Uda Bay llam Anchorage k iver Eugenee Ku r’ R tt Tillamook Gulf of Alaska sk dy e S o Nome A na R Prince William Sound kw Salem2iv Queen Charlotte Islands u im s e Astoria Palmeri R Norton Sound ive r t iv R r STANOVOY RANGE n e a r a Valdez m Portland2 R y r Aberdeen2 Port HardyQueen Charlotte Sound i l e Dixon Entrance v o v Vancouver1 e CHUKCHI PENINSULA K i r R y r Centralia Bering Strait O u e Sitka l t v Olympia Seward Peninsula o h i ALASKA RANGE y R k R Courtenay ive u ia KetchikanAlexander Archipelago r K b TacomaStrait of Juan de Fuca Nanaimo m r Bol’sho u e y l A Wrangell v n o Puget Sound Strait of Georgia i United States of America yu C SeattleEverett R y r er Kotzebue Sound Ri e Juneau p ve iv BellinghamVancouver2 S op r R Yakima t C Kotzebue n ik r o COAST MOUNTAINS in e l COLUMBIA PLAT. -
The Surface of Mars Michael H. Carr Index More Information
Cambridge University Press 978-0-521-87201-0 - The Surface of Mars Michael H. Carr Index More information Index Accretion 277 Areocentric longitude Sun 2, 3 Acheron Fossae 167 Ares Vallis 114, 116, 117, 231 Acid fogs 237 Argyre 5, 27, 159, 160, 181 Acidalia Planitia 116 floor elevation 158 part of low around Tharsis 85 floor Hesperian in age 158 Admittance 84 lake 156–8 African Rift Valleys 95 Arsia Mons 46–9, 188 Ages absolute 15, 23 summit caldera 46 Ages, relative, by remote sensing 14, 23 Dikes 47 Alases 176 magma supply rate 51 Alba Patera 2, 17, 48, 54–7, 92, 132, 136 Arsinoes Chaos 115, 117 low slopes 54 Ascreus Mons 46, 49, 51 flank fractures 54 summit caldera 49 fracture ring 54 flank vents 49 dikes 55 rounded terraces 50 pit craters 55, 56, 88 Asteroids 24 sheet flows 55, 56 Astronomical unit 1, 2 Tube-fed flows 55, 56 Athabasca Vallis 59, 65, 122, 125, 126 lava ridges 55 Atlantis Chaos 151 dilatational faults 55 Atmosphere collapse 262 channels 56, 57 Atmosphere, chemical composition 17 pyroclastic deposits 56 circulation 8 graben 56, 84, 86 convective boundary layer 9 profile 54 CO2 retention 260 Albedo 1, 9, 193 early Mars 263, 271 Albor Tholus 60 eddies 8 ALH84001 20, 21, 78, 267, 273–4, 277 isotopic composition 17 Alpha Particle X-ray Spectrometer 232 mass 16 Alpha Proton-ray Spectrometer 231 meridional flow 1 Alpheus Colles 160 pressure variations and range 5, 16 AlQahira 122 temperatures 6–8 Amazonian 277 scale height 5, 16 Amazonis Planitia 45, 64, 161, 195 water content 11 flows 66, 68 column water abundance 174 low -
Geology of the Syrtis Major/Isidis Region of Mars: New Results from Mola, Moc, and Themis
Sixth International Conference on Mars (2003) 3061.pdf GEOLOGY OF THE SYRTIS MAJOR/ISIDIS REGION OF MARS: NEW RESULTS FROM MOLA, MOC, AND THEMIS H. Hiesinger, J. W. Head III Department of Geological Sciences, Brown University, Providence, RI 02912, [email protected] Introduction: The motivation of our study is to character- are easily detected and work of Head et al. [2002] and ize the Isidis basin in terms of topography and morphology, Ivanov and Head [2003] showed that Hesperian ridged to investigate the origin of its geologic units, to study the plains underlie the sediments of the Vastitas Borealis for- geologic history and evolution of the basin, and to provide mation in the northern lowlands and in the Isidis basin. additional geologic context for the Beagle lander. The Isi- Alternatively, Tanaka et al. [2001c] proposed that the depo- dis basin is important in that it is one of the major impact sition of up to 2-3 km thick sediments of the Vastitas Bore- basins on Mars. Although not part of the northern lowlands, alis Formation in the northern lowlands resulted in exten- it contains deposits of the Vastitas Borealis Formation. sive deformation of the lithosphere and the tilt of the Isidis Syrtis Major is a large volcanic complex immediately west floor. The origin of these deposits could be sedimentation of the Isidis basin and it has been observed that lavas from from a northpolar ocean as proposed by Parker et al. [1989, Syrtis Major and deposits in the Isidis basin (i.e. the Vasti- 1993] or from large-scale CO2-charged debris-flows as tas Borealis Formation) have complex stratigraphic rela- proposed by Tanaka et al.