OCEANS on MARS. J. W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA (James Head [email protected])

Total Page:16

File Type:pdf, Size:1020Kb

OCEANS on MARS. J. W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA (James Head III@Brown.Edu) Workshop on Mars 2001 2541.pdf OCEANS ON MARS. J. W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA ([email protected]). Introduction: Understanding water, and its state, mapped contacts are ancient shorelines, then they distribution and history on Mars, is one of the most should also represent the margins of an equipotential fundamental goals of the Mars exploration program. surface, and if no vertical movement has occurred Linked to this goal are the questions of the formation subsequent to their formation, the elevation of each and evolution of the atmosphere, the nature of crustal contact should plot as straight lines. Preliminary accretion and destruction, the history of the cryos- analysis of the first 18 orbits showed that neither phere and the polar regions, the origin and evolution Contact plotted as a straight line, but that Contact 2 of valley networks and outflow channels, the nature of was a closer approximation than Contact 1 [5]. We the water cycle, links to SNC meteorites, and issues have now plotted data from Hiatus phase; SPO1, and associated with water and the possible presence of life SPO2, and later orbits, and produced a topographic in the history of Mars. One of the most interesting map of the northern hemisphere. Contact 1 as pres- aspects of recent discussions about water on Mars is ently observed is not a good approximation of an the question of the possible presence of large standing equipotential surface; variation in elevation ranges bodies of water on Mars in its past history. Here we over several km, an amount exceeding plausible val- outline information on recent investigatios into this ues of post-formation vertical movement. Contact 2 is question, and address the ways in which various types a much closer approximation to a straight line, and of present and future Mars missions can contribute to the most significant variations occur in areas where the debate, and gather data to test hypotheses. post-formation vertical movement is anticipated (e.g., Background: Abundant evidence exists for the Tharsis, Elysium, and Isidis). Derivation of the topo- presence of water on the surface and in the subsurface graphic map permits us to test for volumes of water in the past history of Mars [1]. Among the most dis- that might be contained in topographic basins of vari- tinctive pieces of evidence are the outflow channels ous scales. Assuming that the present topography is a that begin full-size at discrete sources and flow hun- reasonable approximation of the topography in Hes- dreds to thousands of km downslope into the northern perian and Amazonian time, we have measured the lowlands displaying a wide variety of bedforms on volume of the topography below Contact 2 and find their floors. An unusual characteristic of outflow that it is about 1.4 x 107 km3, a value lying between channels is that channel cutting does not continue far the minimum for all outflow channels (~0.6-0.8 x 107 into the northern lowlands even though downslope km3, [1,2]) and the maximum value for water- topographic gradients appear to continue. Where did containing megaregolith pore space (~5-20 x 107 km3) the water go? Did it spread out over the broad smooth [6]. This volume of the area below Contact 2 is lowlands and sink into the substrate, or could it have equivalent to a global layer about 100 m deep, and is ponded, creating lakes, seas or oceans? Some inves- within the range of estimates for available water [1]. tigators have hypothesized that outflow channels had The northern hemisphere topographic map also enough volume and occurred with sufficient simulta- permits us to assess what would happen if the low- neity and repetitiveness to produce large standing lands were flooded concurrently or if individual chan- bodies of water in the northern lowlands (Oceanus nels emptied into the lowlands at different times. We Borealis) at several times in the history of Mars [2]. sequentially flooded the northern lowlands in 500 m Specifically, Parker et al. [3-4] mapped two contacts increments and observed where the water would pond near and generally parallel to the highland boundary and how candidate seas and oceans might evolve with of the northern lowlands and interpreted these con- increased depth. The sequence of maps show that tacts to be shorelines, representing two separate high- there are two distinctive basins in the northern low- stands of a north polar ocean. Contact 1 is older and lands, the Utopia Basin and the North Polar Basin. corresponds approximately to the highland-lowland Individual channel-forming events may have flooded dichotomy boundary. Contact 2 is younger, lies only one of these basins, and volumes of the order of northward of Contact 1, and is more well-expressed 1-3 x 106 km3 are required to fill one of the basins to by a sharply defined smooth, lobate, or arcuate con- spill over into the adjacent one. Detailed simulations tact and associated features interpreted to be related to of flooding events from individual channels are un- shorelines and basinward deposition and evoution. derway [7]. Results: The new MOLA data permit us to test Several other geologic features are thought to have theses hypotheses in several ways. First, if the been associated with the presence of bodies of water Workshop on Mars 2001 2541.pdf OCEANS ON MARS: J. W. Head or residual ground ice remaining from them, and the [5], and the implied ocean volume is within the range new topographic data can be used to assess their lo- of estimates of available water on Mars. In addition, cations. Lucchitta et al. [8] examined the locations of detailed topographic maps of the northern lowlands a variety of features in the northern lowlands using reveal two major basins (Utopia and North Polar); Viking image data in an attempt to identify the loca- features thought to be related to the evolution of tion and characteristics of sedimentary deposits that standing bodies of water (polygons, lobate impact might have resulted from the debouchment of the craters) show a high degree of correlation with basin large outflow channels into the adjacent plains. They topography. New slope maps reveal evidence for brought strong support to the sedimentary layer hy- subtle terraces that may be related to regression of pothesis by pointing out that the polygonal ground such a standing body of water. These new data are occurred in close proximity to major channel systems, consistent with, but do not prove, the hypothesis that that the outflow channels and the fractured plains de- the northern lowlands of Mars was occupied by posits have similar ages, that Antarctic analogs re- standing bodies of water ranging in scale from seas to vealed many similarties to this process, and that po- perhaps as large as oceans in earlier Mars history. lygonal ground occurred elsewhere on Mars in similar In addition to the possible presence of large stand- situations. We digitized the global map of the poly- ing bodies of water in the northern lowlands in the gonally fractured terrain on Mars of Lucchitta et al. past history of Mars, other workers have identified and superposed it on our MOLA topography map; we numerous regions elsewhere on Mars where evidence found that there is a strong correlation between the exists for former standing bodies of water at the lake location of the polygonal ground and the position of and sea scale [e.g., 11-16, and see discussion in 1]. the Utopia and North Polar basins. Furthermore, consideration of the hydrosphere and Martian impact craters in the 2-50 km diameter cryosphere [17] in the past history of Mars has led to range commonly have ejecta deposits with distinctive the proposal that large standing bodies of water in the lobe and rampart morphology, interpreted [9] to be Noachian were an inevitable consequence of the pres- due to the presence of ground water or ground ice in ence of outflow channels later in history [18]. All of the target area which mobilizes the ejecta material. It these observations and hypotheses show that explora- is also observed that craters on Mars smaller than a tion plans should be testing various aspects of these few km do not have ramparts, and thus the onset di- questions at all scales and should be complementary ameter of ramparts may be an indication of the depth in their approach [e.g., 19, 20]. where ground water or ground ice is encountered. On General exploration goals and objectives: On the basis of this concept, Kuzmin et al. [10] assessed the basis of the observations and proposed hypothesis, the onset diameter globally and found that in equato- what are the types of questions that might be ad- rial regions the diameter was 4-6 km but toward the dressed and measurements that can be made? pole it was 1-4 km. We have digitized the Kuzmin et 1) What is the origin of smooth plains deposits in al. global onset-diameter map and superposed it on craters and intercrater areas? How can one distin- our MOLA topographic map; we find that there is a guish among volcanic, eolian, fluvial and aqueous strong correlation between the smallest onset diame- deposits? What are the criteria for orbital remote ters and the position of the two large basins. sensing and lander/rover exploration? If there was a standing body of water earlier in the 2) What types of evaporites are predicted for Mars history of Mars, it is not there now. In order to ex- and in what configurations might they be found?: amine the fate of a possible ocean as it regressed, we What are the starting conditions, how do such depos- produced slope maps for the interior of the northern its evolve, can they be recognized after eolian modifi- lowlands.
Recommended publications
  • North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
    Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains.
    [Show full text]
  • THE GEOMETRY of CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: a TEST of the CATASTROPHIC OUTFLOW HYPOTHESIS of FORMATION Kathryn E
    THE GEOMETRY OF CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: A TEST OF THE CATASTROPHIC OUTFLOW HYPOTHESIS OF FORMATION Kathryn E. Fishbaugh1 and James W. Head III1, 1Brown University Box 1846, Providence, RI 02912, [email protected], [email protected] Introduction slumped from the scarp. The profile then drops off, becoming a scarp Chasma Boreale is a large reentrant in the northern polar layered de- with a slope of about 9°. Below the scarp, the surface is smoother, and posits of Mars. The Chasma transects the spiraling troughs which char- beyond this lie dunes which are not visible in Fig. 3a. acterize the polar layered terrain. The origin of Chasma Boreale remains Discussion a subject of controversy. Clifford [1] proposed that the Chasma was Chasma Boreale exhibits some features similar to those associated carved as a result of a jökulhlaup triggered by either breach of a crater with terrestrial jökulhlaup events. Single flood events on Earth show a containing basal meltwater or by basal melting due to a hot spot beneath variety of flood conditions, and outburst floods also exhibit several flood the cap. Benito et al. [2] suggest an origin in which catastrophic outflow peaks [5] which could explain the irregular nature of the Chasma floor, is triggered by sapping caused by a tectono-thermal event. A similar the discontinuity of terracing, and the non-uniform profile shape. The origin is proposed for Chasma Australe in the Martian southern polar asymmetry of the floor at the base of the walls in (Fig. 2 b) could be due cap [3].
    [Show full text]
  • Oceanography and Canadian Atlantic Waters
    ! 1 Oceanography and Canadian Atlantic Waters By H. B. HACHEY Fisheries Research Board oj Canada PUBLISHED BY THE FISHERIES RESEARCH BOARD OF CANADA UNDER THE CONTROL OF THE HONOURABLE THE MINISTER OF FISHERIES OTTAWA, 1961 rice $1.50 cOl AN. OCEAN. AT SUN.RISE I� "And I stood serene and peaceful In the quiet morning hush Gazing eastward o'er the ocean As the Master plied his brush." ( A pologies to Boutilier) BULLETIN No. 134 Oceanograph:r and Canadian .L4.tlantic Waters By H. B. HACHEY Fisheries Research Board oj Canada PUBLISHED BY THE FISHERIES RESEARCH BOARD OF CANADA UNDER THE CONTROL OF THE HONOURABLE THE MINISTER OF FISHERIES OTTAWA, 1961 W. E. RICKER N. M. CARTER Editors ROGER DUHAMEL, F.R.S.C. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTA WA, 1962 94-134 Price $1.50 Cat. No. Fs 11 BULLETINS OF THE FISHERIES RESEARCH BOARD OF CANADA are published from time to time to present popular and scientific information concerning fishes and some other aquatic animals; their environment and the biology of their stocks ; means of capture; and the handling , processing and utilizing of fish and fishery products. In addition, the Board publishes the following : An ANNUAL REPORT of the work carried on under the direction of the Board. The JOURNAL OF THE FISHERIES RESEARCH BOARD OF CANADA, containing the results of scientific investigations. ATLANTIC PROGRESS REPORTS, consisting of brief articles on investigations at the Atlantic stations of the Board. PACIFIC PROGRESS REPORTS, consisting of brief articles on investigations at the Pacific stations of the Board.
    [Show full text]
  • The Surface of Mars Michael H. Carr Index More Information
    Cambridge University Press 978-0-521-87201-0 - The Surface of Mars Michael H. Carr Index More information Index Accretion 277 Areocentric longitude Sun 2, 3 Acheron Fossae 167 Ares Vallis 114, 116, 117, 231 Acid fogs 237 Argyre 5, 27, 159, 160, 181 Acidalia Planitia 116 floor elevation 158 part of low around Tharsis 85 floor Hesperian in age 158 Admittance 84 lake 156–8 African Rift Valleys 95 Arsia Mons 46–9, 188 Ages absolute 15, 23 summit caldera 46 Ages, relative, by remote sensing 14, 23 Dikes 47 Alases 176 magma supply rate 51 Alba Patera 2, 17, 48, 54–7, 92, 132, 136 Arsinoes Chaos 115, 117 low slopes 54 Ascreus Mons 46, 49, 51 flank fractures 54 summit caldera 49 fracture ring 54 flank vents 49 dikes 55 rounded terraces 50 pit craters 55, 56, 88 Asteroids 24 sheet flows 55, 56 Astronomical unit 1, 2 Tube-fed flows 55, 56 Athabasca Vallis 59, 65, 122, 125, 126 lava ridges 55 Atlantis Chaos 151 dilatational faults 55 Atmosphere collapse 262 channels 56, 57 Atmosphere, chemical composition 17 pyroclastic deposits 56 circulation 8 graben 56, 84, 86 convective boundary layer 9 profile 54 CO2 retention 260 Albedo 1, 9, 193 early Mars 263, 271 Albor Tholus 60 eddies 8 ALH84001 20, 21, 78, 267, 273–4, 277 isotopic composition 17 Alpha Particle X-ray Spectrometer 232 mass 16 Alpha Proton-ray Spectrometer 231 meridional flow 1 Alpheus Colles 160 pressure variations and range 5, 16 AlQahira 122 temperatures 6–8 Amazonian 277 scale height 5, 16 Amazonis Planitia 45, 64, 161, 195 water content 11 flows 66, 68 column water abundance 174 low
    [Show full text]
  • Geology of the Syrtis Major/Isidis Region of Mars: New Results from Mola, Moc, and Themis
    Sixth International Conference on Mars (2003) 3061.pdf GEOLOGY OF THE SYRTIS MAJOR/ISIDIS REGION OF MARS: NEW RESULTS FROM MOLA, MOC, AND THEMIS H. Hiesinger, J. W. Head III Department of Geological Sciences, Brown University, Providence, RI 02912, [email protected] Introduction: The motivation of our study is to character- are easily detected and work of Head et al. [2002] and ize the Isidis basin in terms of topography and morphology, Ivanov and Head [2003] showed that Hesperian ridged to investigate the origin of its geologic units, to study the plains underlie the sediments of the Vastitas Borealis for- geologic history and evolution of the basin, and to provide mation in the northern lowlands and in the Isidis basin. additional geologic context for the Beagle lander. The Isi- Alternatively, Tanaka et al. [2001c] proposed that the depo- dis basin is important in that it is one of the major impact sition of up to 2-3 km thick sediments of the Vastitas Bore- basins on Mars. Although not part of the northern lowlands, alis Formation in the northern lowlands resulted in exten- it contains deposits of the Vastitas Borealis Formation. sive deformation of the lithosphere and the tilt of the Isidis Syrtis Major is a large volcanic complex immediately west floor. The origin of these deposits could be sedimentation of the Isidis basin and it has been observed that lavas from from a northpolar ocean as proposed by Parker et al. [1989, Syrtis Major and deposits in the Isidis basin (i.e. the Vasti- 1993] or from large-scale CO2-charged debris-flows as tas Borealis Formation) have complex stratigraphic rela- proposed by Tanaka et al.
    [Show full text]
  • General Index Vols. XLI-L, Third Series
    GENERAL INDEX OF VOLUMES XLI-L OF THE THIRD SERIES. WInthe references to volumes xli to I, only the numerals i to ir we given. NOTE.-The names of mineral8 nre inaerted under the head ol' ~~IBERALB:all ohitllary notices are referred to under OBITUARY. Under the heads BO'PANY,CHK~I~TRY, OEOLO~Y, Roo~s,the refereuces to the topics in these department8 are grouped together; in many cases, the same references appear also elsewhere. Alabama, geological survey, see GEOL. REPORTSand SURVEYS. Abbe, C., atmospheric radiation of Industrial and Scientific Society, heat, iii, 364 ; RIechnnics of the i. 267. Earth's Atmosphere, v, 442. Alnska, expedition to, Russell, ii, 171. Aberration, Rayleigh, iii, 432. Albirnpean studies, Uhler, iv, 333. Absorption by alum, Hutchins, iii, Alps, section of, Rothpletz, vii, 482. 526--. Alternating currents. Bedell and Cre- Absorption fipectra, Julius, v, 254. hore, v, 435 ; reronance analysis, ilcadeiny of Sciences, French, ix, 328. Pupin, viii, 379, 473. academy, National, meeting at Al- Altitudes in the United States, dic- bany, vi, 483: Baltimore, iv, ,504 : tionary of, Gannett, iv. 262. New Haven, viii, 513 ; New York, Alum crystals, anomalies in the ii. 523: Washington, i, 521, iii, growth, JIiers, viii, 350. 441, v, 527, vii, 484, ix, 428. Aluminum, Tvave length of ultra-violet on electrical measurements, ix, lines of, Runge, 1, 71. 236, 316. American Association of Chemists, i, Texas, Transactions, v, 78. 927 . Acoustics, rrsearchesin, RIayer, vii, 1. Geological Society, see GEOL. Acton, E. H., Practical physiology of SOCIETYof AMERICA. plants, ix, 77. Nuseu~nof Sat. Hist., bulletin, Adams, F.
    [Show full text]
  • Bedform Migration on Mars: Current Results and Future Plans
    Aeolian Research xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Review Article Bedform migration on Mars: Current results and future plans ⇑ Nathan Bridges a, , Paul Geissler b, Simone Silvestro c, Maria Banks d a Johns Hopkins University, Applied Physics Laboratory, 200-W230, 11100 Johns Hopkins Road, Laurel, MD 20723, USA b US Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, AZ 86001-1698, USA c SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043, USA d Center for Earth and Planetary Studies, Smithsonian National Air and Space Museum, Washington, DC 20013-7012, USA article info abstract Article history: With the advent of high resolution imaging, bedform motion can now be tracked on the Martian surface. Received 30 July 2012 HiRISE data, with a pixel scale as fine as 25 cm, shows displacements of sand patches, dunes, and ripples Revised 19 February 2013 up to several meters per Earth year, demonstrating that significant landscape modification occurs in the Accepted 19 February 2013 current environment. This seems to consistently occur in the north polar erg, with variable activity at Available online xxxx other latitudes. Volumetric dune and ripple changes indicate sand fluxes up to several cubic meters per meter per year, similar to that found in some dune fields on Earth. All ‘‘transverse aeolian ridges’’ Keywords: are immobile. There is no relationship between bedform activity and coarse-scale global circulation mod- Mars els, indicating that finer scale topography and wind gusts, combined with the predicted low impact Dunes Ripples threshold on Mars, are the primary drivers.
    [Show full text]
  • 3D Modelling of the Climatic Impact of Outflow Channel Formation Events
    3D Modelling of the climatic impact of outflow channel formation events on Early Mars. Martin Turbet1, Francois Forget1, James W. Head2, and Robin Wordsworth3 1Laboratoire de Met´ eorologie´ Dynamique, Sorbonne Universites,´ UPMC Univ Paris 06, CNRS, 4 place Jussieu, 75005 Paris. 2Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA. 3Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. June 29, 2021 arXiv:1701.07886v1 [astro-ph.EP] 26 Jan 2017 Abstract Mars was characterized by cataclysmic groundwater-sourced surface flooding that formed large outflow channels and that may have altered the climate for extensive periods during the Hesperian era. In particular, it has been speculated that such events could have induced significant rainfall and caused the formation of late-stage valley networks. We present the results of 3-D Global Climate Model simulations reproducing the short and long term climatic impact of a wide range of outflow channel formation events under cold ancient Mars conditions. We find that the most intense of these events (volumes of water up to 107 km3 and released at temperatures up to 320 Kelvins) cannot trigger long-term greenhouse global warming, regardless of how favorable are the external conditions (e.g. obliquity and seasons). Furthermore, the intensity of the response of the events is significantly affected by the atmospheric pressure, a parameter not well constrained for the Hesperian era. Thin atmospheres (P < 80 mbar) can be heated efficiently because of their low volumetric heat capacity, triggering the formation of a convective plume that is very efficient in transporting water vapor and ice at the global scale.
    [Show full text]
  • The Flint River Observer
    1 contain life as we know it today. Mars may not either, but the only way to know for sure is to study THE it up close and personal. That’s why the U. S., Russia and other nations have sent 45 spacecrafts to fly by, orbit or land on the Red Planet since 1960. FLINT RIVER Twenty-two of those missions have been successful (or at least partly successful), and seven additional missions are still in the developmental stage. OBSERVER -Bill Warren NEWSLETTER OF THE FLINT * * * RIVER ASTRONOMY CLUB Last Month’s Meeting/Activities. Fifteen members – Dwight Harness; Erik Erikson; An Affiliate of the Astronomical League Carlos Flores; Truman Boyle; John Felbinger; Kenneth Olson; Joseph Auriemma; Marla Vol. 22, No. 5 July, 2018 Smith; Eva Schmidler; Alan Pryor; Sean Officers: President, Dwight Harness; Vice Neckel; Steve Hollander; Aaron Calhoun; Tom President, Bill Warren; Secretary, Carlos Flores; Moore; and yr. editor – and visitor John Killian Board of Directors: Larry Higgins; Aaron -- attended our June meeting. Ken brought cookies, Calhoun; and Alan Rutter. and yr. editor dived into them with both hands. (He Alcor: Carlos Flores; Webmaster: Tom later pondered life’s greatest mystery: How can you Moore; Program Coordinator/Newsletter Editor: eat a few cookies and gain four pounds?) Bill Warren; Observing Coordinator: Sean Tom, FRAC’s astronomical equivalent of Neckel; NASA Contact: Felix Luciano. Stephen Hawking, said he’d heard that next month Mars will be as big as the Full Moon, whereupon * * * Aaron, another intellectual giant, replied, “Wow, Club Calendar. Thurs., July 12: FRAC meeting that’s big!” (7:30 p.m., The Garden in Griffin; Fri.-Sat., July Aaron and yr.
    [Show full text]
  • On Earth, Venus, and Mars Cluded by Using Methods Already Tested in Downloaded from Coarser Grid Physical Models (33)
    1 1 I_,S mechanism to help interpret these observa- models. Most of those efforts require contin- Paterson, J. Phys. Oceanogr. 21, 1333 (1991). tions in the future. ued growth in computer 22. J. K. Dukowicz and R. D. Smith, J. Geophys. Res. power. 99, 7991 (1994). At low latitudes, some eddies reorganize 23. A. J. Semtner, in Proceedings of the 1993 Snow- into elongated east-west currents that are REFERENCES AND NOTES mass Global Change Institute on the Global Carbon reminiscent of flows on Jupiter and Saturn. Cycle, T. Wigley, Ed. (Cambridge Univ. Press, Cam- The strong variation of the Coriolis effect 1. S. G. Philander, El Nino, La Nina, and the Southern bridge, in press). Oscillation (Academic Press, San Diego, 1990). 24. R. D. Smith, R. C. Malone, M. Maltrud, A. Semtner, in with latitude in the tropics causes the turbu- 2. S. Manabe and R. J. Stouffer, Nature 364, 215 preparation. lence there to have a preferred orientation. In (1993). 25. R. Bleck, S. Dean, M. OKeefe, A. Sawdey Parallel some southern deep basins, the Antarctic Cir- 3. F. Nansen, Oceanography of the North Polar Basin, Comput., in press. vol. 3 of Science Research (Christiania, Oslo, Nor- 26. D. Stammer and C. W. Boning, J. Phys. Oceanogr. cumpolar Current organizes into four persis- way, 1902). 22, 732 (1992). tent filaments maintained by eddy processes, 4. H. Stommel, The Gulf Stream: A Physical and Dy- 27. W. J. Schmitz and J. D. Thompson, ibid. 23, 1001 rather than being one broad stream. The cur- namical Description (Univ. of Califomia, Berkeley, (1993) rents circling Antarctica are the closest ana- 1965).
    [Show full text]
  • Modern Sedimentation Processes in the Kara Sea (Si Beria)
    Modern Sedimentation Processes in the Kara Sea (Si beria) Moderne Sedimentationsprozesse in der Karasee (Sibirien) Andrea Catalina Gebhardt Ber. Polarforsch. Meeresforsch. 490 (2004) ISSN 1618 - 3193 Andrea Catalina Gebhardt Alfred Wegener Institute for Polar and Marine Research Columbusstrasse 27568 Bremerhaven Germany e-mail: [email protected] Die vorliegende Arbeit ist die inhaltlich unverändert Fassung einer Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der UniversitäHamburg. Als Dissertation angenommen vom Fachbereich Geowissenschaften der UniversitäHamburg aufgrund der Gutachten von Herrn Prof. Dr. K.-C.Emeis und Frau Dr. B. Gaye-Haake. Hamburg, den 20. April 2004 Eine elektronische Version dieses Dokumentes kann bezogen werden unter: http:llwww.awi-bremerhaven.de * Veröffentlichunge Preface One of the important characteristics of the Arctic Ocean, surrounded by the world's largest shelf seas and seasonally to permanently covered by sea ice, is its large river discharge which is equivalent to 10Y0 of the global runoff. The freshwater balance of the Arctic Ocean is an irnportant factor controlling sea-ice extent and intermediatelbottom water formation in the Northern Hemisphere, as weil as Arctic Ocean surface-water conditions. The formation and melting of sea ice result in distinct changes in the surface albedo, the energy balance, the temperature and salinity structure of the upper water masses, and the biological processes, and thus play a major role in the global climate System, Having in mind this importance of river discharge, a bilateral Russian-German multidisciplinary research project to investigate the "Siberian River Run-Off (SIRRO), specifically of the Westsiberian rivers Ob and Yenisei, was established in 1997 (see Stein et al., 2003, and further references therein for details).
    [Show full text]
  • MARS NORTH POLAR STRATIGRAPHY and IMPLICATIONS for GEOLOGIC HISTORY Kathryn E
    Sixth International Conference on Mars (2003) 3141.pdf MARS NORTH POLAR STRATIGRAPHY AND IMPLICATIONS FOR GEOLOGIC HISTORY Kathryn E. Fishbaugh1 and James W. Head III1, 1Brown University, Dept. Geol. Sci., Box 1846, Providence, RI 02912, [email protected], [email protected] Introduction: We have continued investigation of the incorporation into basal ice, and basal melting with dark, layered, and possibly sand-rich unit beneath the subsequent redistribution). Figure 1 shows the north polar deposits begun by previous authors [1-4] geographic context and topographic relationships of the and have described the detailed characteristics of this BU, north polar cap, and the surrounding plains. basal unit (BU) [5-7; Fishbaugh and Head, abstract in this volume]. While Kolb and Tanaka [2] describe the Possible Origins: We present three possible modes BU as consisting of early north polar deposits, Byrne of formation of the BU and three possible ways in which it may have been modified since its formation. and Murray [3] suggest that such a significant change in deposition style has taken place that the unit must represent a period in time when there was no polar cap. They believe that the BU consists of ice-rich paleoerg deposits that migrated to the low elevation plains underlying the current polar deposits. In addition to these possibilities, we suggest that the unit may have Figure 2. Sketch of present stratigraphy at north pole with the BU as initially been deposited by outflow channels and/or a a paleopolar deposit. paleo-ocean. 1) Paleopolar Deposit (Fig. 2): While not expounded Fishbaugh and Head [8-10] have shown that the upon in detail, according to Kolb and Tanaka [2], the north polar deposits may once have been larger, BU represents a "an earlier phase of north polar extending to about 75°N.
    [Show full text]