Mechanisms for Lithospheric Heat Transport on Venus Implications For

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms for Lithospheric Heat Transport on Venus Implications For JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 87, NO. Btt, PAGES 9236-9246,NOVEMBER t0, 1982 Mechanismsfor Lithospheric Heat Transport on Venus' Implications for Tectonic Style and Volcanism SEAN C. SOLOMON Departmentof Earth and PlanetarySciences, Massachusetts Institute of Technology Cambridge,Massachusetts 02139 JAMES W. HEAD Departmentof GeologicalSciences, Brown University,Providence, Rhode Island 02912 The tectonicand volcaniccharacteristics of the surfaceof Venus are poorly known, but thesecharacter- isticsmust be closelyrelated to the mechanismby which Venus rids itself of internal heat. On the other solidplanets and satellites of thesolar system, lithospheric heat [ransport is dominatedby oneof three mechanisms:(1) plate recycling,(2) lithosphericconduction, and (3) hot spot volcanism.We evaluateeach mechanismas a candidatefor the dominantmode of lithosphericheat transferon Venus,and we explore the implicationsof eachmechanism for the interpretationof Venussurface features. Despite claims made to the contrary in the literature,plate recyclingon Venus cannot be excludedon the basisof either theoreticalarguments or presentobservations on topographyand radar backscatter.Landforms resulting from plate convergenceand divergenceon Venus would differ substantiallyfrom those on the earth becauseof the high surfacetemperature and the absenceof oceanson Venus,the lack of free or hydrated water in subductedmaterial, the possibilitythat subductionwould more commonlybe accompaniedby lithosphericdelamination, and the rapid spreadingrates that would be requiredif plate recyclingremoves a significantfraction of the internal heat. If plate recyclingoccurs on Venus,the rolling plainsand lowlands provinceswould be approximateanalogs to terrestrialocean basins in termsof age,igneous rock type,and formativeprocess; highlands on Venuswould be roughlyanalogous to terrestrialcontinents. The hypoth- esisthat lithosphericconduction dominates shallow heat transferon Venusleads to the predictionthat the lithosphereis thin. If Venus has a global heat lossper massequal to that for earth, then temperatures marking the baseof the thermal lithosphereon earth would be reachedon Venus at an averagedepth of about 40 km. Unlessthe mantleconvective planform can maintainlithospheric regions of persistentlylow heat flow or unlessthe presentatmospheric greenhouse on Venus is geologicallyrecent, then such a lithosphericthickness leads to the conclusionthat the topographicfeatures contributing to the 13 km of relief on the planet must be geologicallyyoung. The hypothesisthat hot spot volcanismdominates lithosphericheat transferon Venusleads to the predictionthat the surfacemust be coveredwith numerous activevolcanic sources. In particular,if a typical Venushot spot has a volcanicflux equal to the average flux for the Hawaiianhot spotfor the last40 m.y.,then 10 '• suchhot spotsare necessaryto removethe Venusinternal heat by volcanism.Such a numberwould produceenough volcanic material to resurfacethe entire planet to a depth of 1 km every 2 m.y.; few areas of the planet would escaperesurfacing for geologicallylong periodsof time. We find that none of the mechanismsfor lithosphericheat transferon Venus can be excludedas unimportant at present; it is likely that, as on earth, a combination of mechanismsoperates on Venus.The strongestconclusion to emergefrom this evaluationis that most of the major topographicfeatures and probablymany of the surfacegeological units on Venusare youngby comparisonwith the surfacesof the smallerterrestrial planets. INTRODUCTION mon, 1981]. For Jupiter'smoon Io, eruptions at individual The mechanismby which a solid planet transportsheat volcaniccenters, or 'hot spots,'dominate the lithosphericheat acrossthe outer 100 km of its interior playsa pivotal role in flux [Matson et al., 1981; Reynoldset al., 1980; O'Reilly and determiningthe stylesand magnitudesof tectonicand volcanic Davies,1981] and result in geologicallyrapid rates of global activityat the planet'ssurface. Among the planetscan be found resurfacing[Johnson et al., 1979]. examplesof bodiesin which one of three distinct mechanisms For Venus, the available radar imaging and altimetry data hasdominated heat loss(Figure 1), and the resultinggeological [Goldsteinet al., 1976,1978; Campbell et al., 1976,1979; Camp- historiesfor thesebodies differ profoundly.For the earth, the bell and Burns, 1980; Pettengillet al., 1980; Masurskyet al., majority of mantle-derived heat is delivered to the surface 1980] are at too coarse a horizontal resolution to allow the throughplate recycling:the processesof creation,cooling, and tectonic and volcanic featuresdiagnostic of one or more of subductionof oceaniclithosphere [Sclater et al., 1980].For the thesemechanisms of lithosphericheat transferto be discerned smaller terrestrialbodies, including Mars, Mercury, and the unequivocally.As a result,debates have ensued over suchissues earth'smoon, heat transporthas occurredprincipally by con- as whetherthe surfaceof Venusdisplays features indicative of ductionthrough a globallycontinuous lithospheric shell [Solo- lithosphericrecycling analogous to terrestrialplate tectonics mon,1978], and the levelsof both tectonicand volcanicactivity [Masursky et al., 1980; Phillips et al., 1981; Arvidson and have been much more limited than on earth [Head and Solo- Davies,1981; Head et al., 1981;Kaula and Phillips,1981; Arvid- sonand Guinness,1982; Brassand Harrison, 1982; Phillipsand Malin, 1982]. Rather than simplycontinuing such a debate,we Copyright1982 by the AmericanGeophysical Union. take in thispaper a differentapproach to the coupledquestions Paper number 2B1314. of lithosphericheat transportand volcanicand tectonicactivity 0148-0227/82/002B-1314505.00 on Venus. 9236 SOLOMONAND HEAD: LITHOSPHERICHEAT TILANSPORTON VENUS 9237 LITHOSPHERIC remaining from such ancient processesas planetary accretion CONDUCTION and core-mantledifferentiation. A recentreview of theseaspects '//•Moon,Mercury of the thermal history problem is given by Solomonet al. / •Mars [1981]. Of the currently operativeprocesses, radioactive decay MECHANISMSOF / • contributesthe vast majority of the heat generation,with minor incrementscontributed from the motion of phase boundaries (e.g.,inner core freezing)and tidal dissipation.To determinethe partitioning of global heat loss between presentlygenerated and ancient heat, it is necessaryto solvefor the earth's thermal evolution,including particularly the effectof solidstate convec- tion on mantle heat transfer. A number of such calculations have recently been performed using one of several par- ameterizationschemes for heat transportby mantle convection [Sharpe and Peltier, 1978, 1979; Schubertet al., 1979a, b, 1980; IO Schubert,1979; Sleep, 1979; Stevensonand Turner, 1979; Tur- PLATE HOT SPOT cotte et al., 1979; Daly, 1980; Davies, 1980; McKenzie and RECYCLING VOLCANISM Weiss, 1980; Stacey, 1980; Turcotte, 1980; Cook and Turcotte, 1981; McKenzie and Richter, 1981]. Thesecalculations indicate Fig. 1. Schematic ternary diagram showing the relative contri- that some fraction between 50 and 90% of the earth's heat loss butionsof each mechanismof lithosphericheat transfertoward global heat loss on solid planets and satellites.For the moon, Mercury, and is contributedby presentlyoperative heat generationprocesses, Mars, thermal conductioncarries all of the lithosphericheat flow. The with the specific value dependent on the type of par- position of the earth, on which the majority of lithospheric heat ameterizationadopted and the assumptionsmade about heat transport occursby plate recycling,is from Sclater et al. [1980] and sources,the temperature dependenceof viscosity,and radial does not include the contribution to global heat loss from crustal radioactivity. Hot spot volcanismdominates heat loss on Iv, but the zoning in the mantle. The remainderof the earth's heat lossis a relative fraction contributed by conduction is not known precisely consequenceof the secularcooling of the planet. [Reynoldset al., 1980; O'Reilly and Davies, 1981]; at the position There are several observationaland theoretical arguments shownon the diagram, the conductiveheat flow on Iv is equal to the that provide somesupport for the assumptionof equal rates of earth'saverage heat flux. heat loss per mass for Venus and earth. Several independent cosmochemical models for the formation of the terrestrial planetsyield roughly comparablebulk abundancesby massfor We pose three hypothesesfor lithosphericheat transfer on heat-generatingelements in the two bodies [see Wood et al., Venus, each based on one of the mechanisms known to domi- 1981]. The measured abundances of U, Th, and K at the nate heat flux on other planetary bodies:(1) that lithospheric Venera 8, 9, and 10 landing sites [Vinogradov et al., 1973; heat transport occursprimarily throughplate recycling,(2) that Surkov et al., 1977; Surkov, 1977] and the measuredK20 lithosphericconduction dominatesthe heat loss, and (3) that abundancesat the Venera 13 and 14 landing sites[Barsukov, heat is transportedthrough the lithosphereprincipally by hot 1982] are generally comparable to values in terrestrial tho- spot volcanism.These three hypothesesshould be regarded as leiitesand alkali basalts.The total amountof radiogenic'•øAr end-members;clearly, combinationsof mechanismsmay also in the Venus atmosphereis within a factor of 3 of that in the serveto deliver internal heat to the planetary surface.We test earth'satmosphere [Hoffman et al., 1980-1,though whetherthe eachhypothesis against
Recommended publications
  • Chapter 3. the Crust and Upper Mantle
    Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core.
    [Show full text]
  • Climate Histories of Mars and Venus, and the Habitability of Planets
    CLIMATE HISTORIES OF MARS AND VENUS, AND THE HABITABILITY OF PLANETS In the temporal sequence that Part III of the book has ¡NTRODUCT¡ON 15.1 been following, we stand near the end of the Archean eon. Earth at the close of the Archean,2.5 billion years ago, By this point in time, the evolution of Venus and its atmo- was a world in which life had arisen and plate tectonics sphere almost certainly had diverged from that of Earth, dominated, the evolution of the crust and the recycling of and Mars was on its way to being a cold, dry world, if volatiles. Yet oxygen (Oz) still was not prevalent in the it had not already become one. This is the appropriate atmosphere, which was richer in COz than at present. In moment in geologic time, then, to consider how Earth's this last respect, Earth's atmosphere was somewhat like neighboring planets diverged so greatly in climate, and to that of its neighbors, Mars and Venus, which today retain ponder the implications for habitable planets throughout this more primitive kind of atmosphere. the cosmos. In the following chapter, we consider why Speculations on the nature of Mars and Venus were, Earth became dominated by plate tectonics, but Venus prior to the space program, heavily influenced by Earth- and Mars did not. Understanding this is part of the key centered biases and the poor quality of telescopic observa- to understanding Earth's clement climate as discussed in tions (figure 15.1). Thirty years of U.S. and Soviet robotic chapter 1.4.
    [Show full text]
  • The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is.
    [Show full text]
  • Structure of the Earth
    TheThe Earth’sEarth’s StructureStructure fromfrom TravelTravel TimesTimes SphericallySpherically symmetricsymmetric structure:structure: PREMPREM --CCrustalrustal StructuStructurree --UUpperpper MantleMantle structustructurree PhasePhase transitiotransitionnss AnisotropyAnisotropy --LLowerower MantleMantle StructureStructure D”D” --SStructuretructure ofof thethe OuterOuter andand InnerInner CoreCore 3-3-DD StStructureructure ofof thethe MantleMantle fromfrom SeismicSeismic TomoTomoggrraphyaphy --UUpperpper mantlemantle -M-Miidd mmaannttllee -L-Loowweerr MMaannttllee Seismology and the Earth’s Deep Interior The Earth’s Structure SphericallySpherically SymmetricSymmetric StructureStructure ParametersParameters wwhhichich cancan bebe determineddetermined forfor aa referencereferencemodelmodel -P-P--wwaavvee v veeloloccitityy -S-S--wwaavvee v veeloloccitityy -D-Deennssitityy -A-Atttteennuuaattioionn ( (QQ)) --AAnisonisotropictropic parame parametersters -Bulk modulus K -Bulk modulus Kss --rrigidityigidity µ µ −−prepresssuresure - -ggravityravity Seismology and the Earth’s Deep Interior The Earth’s Structure PREM:PREM: velocitiesvelocities andand densitydensity PREMPREM:: PPreliminaryreliminary RReferenceeference EEartharth MMooddelel (Dziewonski(Dziewonski andand Anderson,Anderson, 1981)1981) Seismology and the Earth’s Deep Interior The Earth’s Structure PREM:PREM: AttenuationAttenuation PREMPREM:: PPreliminaryreliminary RReferenceeference EEartharth MMooddelel (Dziewonski(Dziewonski andand Anderson,Anderson, 1981)1981) Seismology and the
    [Show full text]
  • INTERIOR of the EARTH / an El/EMEI^TARY Xdescrrpntion
    N \ N I 1i/ / ' /' \ \ 1/ / / s v N N I ' / ' f , / X GEOLOGICAL SURVEY CIRCULAR 532 / N X \ i INTERIOR OF THE EARTH / AN El/EMEI^TARY xDESCRrPNTION The Interior of the Earth An Elementary Description By Eugene C. Robertson GEOLOGICAL SURVEY CIRCULAR 532 Washington 1966 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director First printing 1966 Second printing 1967 Third printing 1969 Fourth printing 1970 Fifth printing 1972 Sixth printing 1976 Seventh printing 1980 Free on application to Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, VA 22202 CONTENTS Page Abstract ......................................................... 1 Introduction ..................................................... 1 Surface observations .............................................. 1 Openings underground in various rocks .......................... 2 Diamond pipes and salt domes .................................. 3 The crust ............................................... f ........ 4 Earthquakes and the earth's crust ............................... 4 Oceanic and continental crust .................................. 5 The mantle ...................................................... 7 The core ......................................................... 8 Earth and moon .................................................. 9 Questions and answers ............................................. 9 Suggested reading ................................................ 10 ILLUSTRATIONS
    [Show full text]
  • The Upper Mantle and Transition Zone
    The Upper Mantle and Transition Zone Daniel J. Frost* DOI: 10.2113/GSELEMENTS.4.3.171 he upper mantle is the source of almost all magmas. It contains major body wave velocity structure, such as PREM (preliminary reference transitions in rheological and thermal behaviour that control the character Earth model) (e.g. Dziewonski and Tof plate tectonics and the style of mantle dynamics. Essential parameters Anderson 1981). in any model to describe these phenomena are the mantle’s compositional The transition zone, between 410 and thermal structure. Most samples of the mantle come from the lithosphere. and 660 km, is an excellent region Although the composition of the underlying asthenospheric mantle can be to perform such a comparison estimated, this is made difficult by the fact that this part of the mantle partially because it is free of the complex thermal and chemical structure melts and differentiates before samples ever reach the surface. The composition imparted on the shallow mantle by and conditions in the mantle at depths significantly below the lithosphere must the lithosphere and melting be interpreted from geophysical observations combined with experimental processes. It contains a number of seismic discontinuities—sharp jumps data on mineral and rock properties. Fortunately, the transition zone, which in seismic velocity, that are gener- extends from approximately 410 to 660 km, has a number of characteristic ally accepted to arise from mineral globally observed seismic properties that should ultimately place essential phase transformations (Agee 1998). These discontinuities have certain constraints on the compositional and thermal state of the mantle. features that correlate directly with characteristics of the mineral trans- KEYWORDS: seismic discontinuity, phase transformation, pyrolite, wadsleyite, ringwoodite formations, such as the proportions of the transforming minerals and the temperature at the discontinu- INTRODUCTION ity.
    [Show full text]
  • LESSON PLAN from Core to Crust Craters of the Moon National Monument & Preserve
    LESSON PLAN From Core to Crust Craters of the Moon National Monument & Preserve Side view of mantle and crust GRADE LEVEL: Fifth Grade-Sixth Grade SUBJECT: Earth Science, Geology DURATION: 2-3 hours GROUP SIZE: Up to 36 (6-12 breakout groups) SETTING: classroom NATIONAL/STATE STANDARDS: CCRA.SL.1 NGSS.SEP.2 KEYWORDS: stratigraphy, earth science, geology Overview Students act out different parts of the Earth and then build models of the Earth showing its layers. (CLASSROOM ACTIVITY) Objective(s) Students will be able to name the parts of the Earth. Students will understand that the Earth is dynamic. Background The Earth, like the life on its surface, is changing all the time. Parts of it are molten and slowly rise, cool, and sink back toward the Earth's core, like soup simmering over a fire. Continents drift around the globe creating the features we think of when we think of geology. But most of the Earth lies unseen between our feet and the other side of the world. The Earth is made up of the crust, the mantle, and the core. Although geologists have only drilled a few miles into the Earth's crust, they have indirectly deduced much about the remainder of the planet's composition. The Crust What we walk on and see is the crust. It is wafer thin, only 3 to 22 miles thick. If the Earth were the size of a billiard ball, the crust would be as thick as a postage stamp stuck to its surface (think how thick the membrane of life would be that coats the Earth!).
    [Show full text]
  • Extraterrestrial Geology Issue
    Lite EXTRAT E RR E STRIAL GE OLO G Y ISSU E SPRING 2010 ISSUE 27 The Solar System. This illustration shows the eight planets and three of the five named dwarf planets in order of increasing distance from the Sun, although the distances between them are not to scale. The sizes of the bodies are shown relative to each other, and the colors are approximately natural. Image modified from NASA/JPL. IN TH I S ISSUE ... Extraterrestrial Geology Classroom Activity: Impact Craters • Celestial Crossword Puzzle Is There Life Beyond Earth? Meteorites in Antarctica Why Can’t I See the Milky Way? Most Wanted Mineral: Jarosite • Through the Hand Lens New Mexico’s Enchanting Geology • Short Items of Interest NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES A DIVISION OF NEW MEXICO TECH EXTRAT E RR E STRIAL GE OLO G Y Douglas Bland The surface of the planet we live on was created by geologic Many factors affect the appearance, characteristics, and processes, resulting in mountains, valleys, plains, volcanoes, geology of a body in space. Size, composition, temperature, an ocean basins, and every other landform around us. Geology atmosphere (or lack of it), and proximity to other bodies are affects the climate, concentrates energy and mineral resources just a few. Through images and data gathered by telescopes, in Earth’s crust, and impacts the beautiful landscapes outside satellites orbiting Earth, and spacecraft sent into deep space, the window. The surface of Earth is constantly changing due it has become obvious that the other planets and their moons to the relentless effects of plate tectonics that move continents look very different from Earth, and there is a tremendous and create and destroy oceans.
    [Show full text]
  • The Mantle of Mars
    The Mantle of Mars: Insights from Theory, Geophysics, High-Pressure Studies, and Meteorites Program and Abstract Volume LPI Contribution No. 1684 The Mantle of Mars: Insights from Theory, Geophysics, High-Pressure Studies, and Meteorites October 10–12, 2012 • Houston, Texas Sponsors Universities Space Research Association Lunar and Planetary Institute Jet Propulsion Laboratory Conveners Jim Papike University of New Mexico Charles Shearer University of New Mexico Dave Beaty Jet Propulsion Laboratory Scientific Organizing Committee Bruce Banerdt, Jet Propulsion Laboratory Dave Beaty, Jet Propulsion Laboratory Lars Borg, Lawrence Livermore National Laboratory Linda Elkins-Tanton, Department of Terrestrial Magnetism, Carnegie Institution of Washington Yingwei Fei, Geophysical Laboratory, Carnegie Institution of Washington Jim Papike, University of New Mexico Kevin Righter, NASA Johnson Space Center Charles Shearer, University of New Mexico Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1684 Compiled in 2012 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication.
    [Show full text]
  • The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is.
    [Show full text]
  • The Earth's Structure
    THE EARTH’S STRUCTURE Geology is the study of the earth, including its structure, rocks, minerals, history, and the forces that affect it. The Earth’s surface has not always had its present form; it has changed over time. The three main layers of the Earth, the crust, mantle, and core, are all made of different materials (Figure 1). The crust is solid rock and can range in thickness from three miles (the ocean floor) to 37 miles (mountain ranges). Project Mohole, began by U.S. scientists in 1959, was designed to drill a hole all the way through the crust into the mantle. The drilling began under the Pacific Ocean, but the project ran out of money and was stopped in 1967. To date, no one has been able to get a sample of material from the mantle, but it is thought to be hotter and denser or heavier than the crust and more plastic or able to flow and change its shape under pressure. The mantle reaches 1800 miles below the crust (84% of the earth’s volume). The core contains more than 15% of the earth’s volume. Many geologists are unwilling to guess what the core is made of, but they think it must be very hot and dense. The earth’s crust is broken into several pieces called plates. These plates rest on and slide across the mantle. These plates are constantly drifting and moving the continents with them. Geologists believe that, millions of years ago, all of the continents were one huge land mass.
    [Show full text]
  • Mantle Plumes and Their Record in Earth History by KC Condie
    Mantle Plumes and Their Record in Earth History by K. C. Condie, 2001: Cambridge University Press, 40 West 20th Street, New York, NY 10011-4211 USA; hardcover, US$110, ISBN 0-521-80604-6; soft cover, US$40 ISBN 0-521-01472-7., 306 pages. This book is a synthesis of much of the work on mantle plumes that has occurred over the past 10 - 15 years. As such, the information is current and relevant to research on the origin and effects of plumes. Half of the 700 plus cited references were published in or after 1995, making this book an excellent research reference. Additionally, the text is well designed for being a usable textbook for advance undergraduates and graduate students. In essence, this book is an expanded compilation of recent publications by Condie with the addition of introductory chapters that provide a review of mantle plume hypotheses and supporting data. Although the book is geared toward igneous geochemists and petrologists, it also addresses some sedimentary topics related to the effects of plumes. The book contains nine chapters that cover most aspects of mantle plumes. The organization of the book follows a format of presenting the observational, geochemical, and experimental evidence supporting the existence of mantle plumes, followed by the more speculative hypotheses, including the role of plumes in the evolution of the earth. Chapter one presents an overview of the structure of plumes and the mantle. Chapter two discusses hotspots, including their tracks, geochemistry, and relationship to geoid highs and mantle upwellings. Chapter three covers large igneous provinces (LIPS), including those in the oceans, on the continents, and on Mars and Venus.
    [Show full text]