Lithospheric Strength Profiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of a Heterogeneous Martian Mantle: Clues from K, P, Ti, Cr, and Ni Variations in Gusev Basalts and Shergottite Meteorites
Earth and Planetary Science Letters 296 (2010) 67–77 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The evolution of a heterogeneous Martian mantle: Clues from K, P, Ti, Cr, and Ni variations in Gusev basalts and shergottite meteorites Mariek E. Schmidt a,⁎, Timothy J. McCoy b a Dept. of Earth Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1 b Dept. of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0119, USA article info abstract Article history: Martian basalts represent samples of the interior of the planet, and their composition reflects their source at Received 10 December 2009 the time of extraction as well as later igneous processes that affected them. To better understand the Received in revised form 16 April 2010 composition and evolution of Mars, we compare whole rock compositions of basaltic shergottitic meteorites Accepted 21 April 2010 and basaltic lavas examined by the Spirit Mars Exploration Rover in Gusev Crater. Concentrations range from Available online 2 June 2010 K-poor (as low as 0.02 wt.% K2O) in the shergottites to K-rich (up to 1.2 wt.% K2O) in basalts from the Editor: R.W. Carlson Columbia Hills (CH) of Gusev Crater; the Adirondack basalts from the Gusev Plains have more intermediate concentrations of K2O (0.16 wt.% to below detection limit). The compositional dataset for the Gusev basalts is Keywords: more limited than for the shergottites, but it includes the minor elements K, P, Ti, Cr, and Ni, whose behavior Mars igneous processes during mantle melting varies from very incompatible (prefers melt) to very compatible (remains in the shergottites residuum). -
Mantle Transition Zone Structure Beneath Northeast Asia from 2-D
RESEARCH ARTICLE Mantle Transition Zone Structure Beneath Northeast 10.1029/2018JB016642 Asia From 2‐D Triplicated Waveform Modeling: Key Points: • The 2‐D triplicated waveform Implication for a Segmented Stagnant Slab fi ‐ modeling reveals ne scale velocity Yujing Lai1,2 , Ling Chen1,2,3 , Tao Wang4 , and Zhongwen Zhan5 structure of the Pacific stagnant slab • High V /V ratios imply a hydrous p s 1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, and/or carbonated MTZ beneath 2 3 Northeast Asia Beijing, China, College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China, CAS Center for • A low‐velocity gap is detected within Excellence in Tibetan Plateau Earth Sciences, Beijing, China, 4Institute of Geophysics and Geodynamics, School of Earth the stagnant slab, probably Sciences and Engineering, Nanjing University, Nanjing, China, 5Seismological Laboratory, California Institute of suggesting a deep origin of the Technology, Pasadena, California, USA Changbaishan intraplate volcanism Supporting Information: Abstract The structure of the mantle transition zone (MTZ) in subduction zones is essential for • Supporting Information S1 understanding subduction dynamics in the deep mantle and its surface responses. We constructed the P (Vp) and SH velocity (Vs) structure images of the MTZ beneath Northeast Asia based on two‐dimensional ‐ Correspondence to: (2 D) triplicated waveform modeling. In the upper MTZ, a normal Vp but 2.5% low Vs layer compared with L. Chen and T. Wang, IASP91 are required by the triplication data. In the lower MTZ, our results show a relatively higher‐velocity [email protected]; layer (+2% V and −0.5% V compared to IASP91) with a thickness of ~140 km and length of ~1,200 km [email protected] p s atop the 660‐km discontinuity. -
STRUCTURE of EARTH S-Wave Shadow P-Wave Shadow P-Wave
STRUCTURE OF EARTH Earthquake Focus P-wave P-wave shadow shadow S-wave shadow P waves = Primary waves = Pressure waves S waves = Secondary waves = Shear waves (Don't penetrate liquids) CRUST < 50-70 km thick MANTLE = 2900 km thick OUTER CORE (Liquid) = 3200 km thick INNER CORE (Solid) = 1300 km radius. STRUCTURE OF EARTH Low Velocity Crust Zone Whole Mantle Convection Lithosphere Upper Mantle Transition Zone Layered Mantle Convection Lower Mantle S-wave P-wave CRUST : Conrad discontinuity = upper / lower crust boundary Mohorovicic discontinuity = base of Continental Crust (35-50 km continents; 6-8 km oceans) MANTLE: Lithosphere = Rigid Mantle < 100 km depth Asthenosphere = Plastic Mantle > 150 km depth Low Velocity Zone = Partially Melted, 100-150 km depth Upper Mantle < 410 km Transition Zone = 400-600 km --> Velocity increases rapidly Lower Mantle = 600 - 2900 km Outer Core (Liquid) 2900-5100 km Inner Core (Solid) 5100-6400 km Center = 6400 km UPPER MANTLE AND MAGMA GENERATION A. Composition of Earth Density of the Bulk Earth (Uncompressed) = 5.45 gm/cm3 Densities of Common Rocks: Granite = 2.55 gm/cm3 Peridotite, Eclogite = 3.2 to 3.4 gm/cm3 Basalt = 2.85 gm/cm3 Density of the CORE (estimated) = 7.2 gm/cm3 Fe-metal = 8.0 gm/cm3, Ni-metal = 8.5 gm/cm3 EARTH must contain a mix of Rock and Metal . Stony meteorites Remains of broken planets Planetary Interior Rock=Stony Meteorites ÒChondritesÓ = Olivine, Pyroxene, Metal (Fe-Ni) Metal = Fe-Ni Meteorites Core density = 7.2 gm/cm3 -- Too Light for Pure Fe-Ni Light elements = O2 (FeO) or S (FeS) B. -
Chapter 3. the Crust and Upper Mantle
Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core. -
Thermal and Crustal Evolution of Mars Steven A
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E7, 10.1029/2001JE001801, 2002 Thermal and crustal evolution of Mars Steven A. Hauck II1 and Roger J. Phillips McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri, USA Received 11 October 2001; revised 4 February 2002; accepted 11 February 2002; published 16 July 2002. [1] We present a coupled thermal-magmatic model for the evolution of Mars’ mantle and crust that may be consistent with estimates of the average crustal thickness and crustal growth rate. By coupling a simple parameterized model of mantle convection to a batch- melting model for peridotite, we can investigate potential conditions and evolutionary paths of the crust and mantle in a coupled thermal-magmatic system. On the basis of recent geophysical and geochemical studies, we constrain our models to have average crustal thicknesses between 50 and 100 km that were mostly formed by 4 Ga. Our nominal model is an attempt to satisfy these constraints with a relatively simple set of conditions. Key elements of this model are the inclusion of the energetics of melting, a wet (weak) mantle rheology, self-consistent fractionation of heat-producing elements to the crust, and a near- chondritic abundance of those elements. The latent heat of melting mantle material is a small (percent level) contributor to the total planetary energy budget over 4.5 Gyr but is crucial for constraining the thermal and magmatic history of Mars. Our nominal model predicts an average crustal thickness of 62 km that was 73% emplaced by 4 Ga. -
Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone
ARTICLE Received 4 Sep 2014 | Accepted 1 Jun 2015 | Published 14 Jul 2015 DOI: 10.1038/ncomms8700 Continental flood basalts derived from the hydrous mantle transition zone Xuan-Ce Wang1, Simon A. Wilde1, Qiu-Li Li2 & Ya-Nan Yang2 It has previously been postulated that the Earth’s hydrous mantle transition zone may play a key role in intraplate magmatism, but no confirmatory evidence has been reported. Here we demonstrate that hydrothermally altered subducted oceanic crust was involved in generating the late Cenozoic Chifeng continental flood basalts of East Asia. This study combines oxygen isotopes with conventional geochemistry to provide evidence for an origin in the hydrous mantle transition zone. These observations lead us to propose an alternative thermochemical model, whereby slab-triggered wet upwelling produces large volumes of melt that may rise from the hydrous mantle transition zone. This model explains the lack of pre-magmatic lithospheric extension or a hotspot track and also the arc-like signatures observed in some large-scale intracontinental magmas. Deep-Earth water cycling, linked to cold subduction, slab stagnation, wet mantle upwelling and assembly/breakup of supercontinents, can potentially account for the chemical diversity of many continental flood basalts. 1 ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia. 2 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O.Box9825, Beijing 100029, China. Correspondence and requests for materials should be addressed to X.-C.W. -
Schaum's Outlines Strength of Materials
Strength Of Materials This page intentionally left blank Strength Of Materials Fifth Edition William A. Nash, Ph.D. Former Professor of Civil Engineering University of Massachusetts Merle C. Potter, Ph.D. Professor Emeritus of Mechanical Engineering Michigan State University Schaum’s Outline Series New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2011, 1998, 1994, 1972 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-163507-3 MHID: 0-07-163507-6 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163508-0, MHID: 0-07-163508-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. -
Strength Versus Gravity
3 Strength versus gravity The existence of any differences of height on the Earth’s surface is decisive evidence that the internal stress is not hydrostatic. If the Earth was liquid any elevation would spread out horizontally until it disap- peared. The only departure of the surface from a spherical form would be the ellipticity; the outer surface would become a level surface, the ocean would cover it to a uniform depth, and that would be the end of us. The fact that we are here implies that the stress departs appreciably from being hydrostatic; … H. Jeffreys, Earthquakes and Mountains (1935) 3.1 Topography and stress Sir Harold Jeffreys (1891–1989), one of the leading geophysicists of the early twentieth century, was fascinated (one might almost say obsessed) with the strength necessary to support the observed topographic relief on the Earth and Moon. Through several books and numerous papers he made quantitative estimates of the strength of the Earth’s interior and compared the results of those estimates to the strength of common rocks. Jeffreys was not the only earth scientist who grasped the fundamental importance of rock strength. Almost ifty years before Jeffreys, American geologist G. K. Gilbert (1843–1918) wrote in a similar vein: If the Earth possessed no rigidity, its materials would arrange themselves in accordance with the laws of hydrostatic equilibrium. The matter speciically heaviest would assume the lowest position, and there would be a graduation upward to the matter speciically lightest, which would constitute the entire surface. The surface would be regularly ellipsoidal, and would be completely covered by the ocean. -
D6 Lithosphere, Asthenosphere, Mesosphere
200 Chapter d FAMILIAR WORLD The Present is the Key to the Past: HUGH RANCE d6 Lithosphere, asthenosphere, mesosphere < plastic zone > The terms lithosphere and asthenosphere stem from Joseph Barell’s 1914-15 papers on isostasy, entitled The Strength of the Earth's Crust, in the Journal of Geology.1 In the 1960s, seismic studies revealed a zone of rock weakness worldwide near the top of the upper part of the mantle. This zone of weakness is called the asthenosphere (Gk. asthenes, weak). The asthenosphere turned out to be of revolutionary significance for historical geology (see Topic d7, plate tectonic theory). Within the asthenosphere, rock behaves plastically at rates of deformation measured in cm/yr over lineal distances of thousands of kilometers. Above the asthenosphere, at the same rate of deformation, rock behaves elastically and, being brittle, it can break (fault). The shell of rock above the asthenosphere is called the lithosphere (Gk. lithos, stone). The lithosphere as its name implies is more rigid than the asthenosphere. It is important to remember that the names crust and lithosphere are not synonyms. The crust, the upper part of the lithosphere, is continental rock (granitic) in some places and is oceanic rock (basaltic) elsewhere. The lower part of lithosphere is mantle rock (peridotite); cooler but of like composition to the asthenosphere. The asthenosphere’s top (Figure d6.1) has an average depth of 95 km worldwide below 70+ million year old oceanic lithosphere.2 It shallows below oceanic rises to near seafloor at oceanic ridge crests. The rigidity difference between the lithosphere and the asthenosphere exists because downward through the asthenosphere, the weakening effect of increasing temperature exceeds the strengthening effect of increasing pressure. -
Structure of the Earth
TheThe Earth’sEarth’s StructureStructure fromfrom TravelTravel TimesTimes SphericallySpherically symmetricsymmetric structure:structure: PREMPREM --CCrustalrustal StructuStructurree --UUpperpper MantleMantle structustructurree PhasePhase transitiotransitionnss AnisotropyAnisotropy --LLowerower MantleMantle StructureStructure D”D” --SStructuretructure ofof thethe OuterOuter andand InnerInner CoreCore 3-3-DD StStructureructure ofof thethe MantleMantle fromfrom SeismicSeismic TomoTomoggrraphyaphy --UUpperpper mantlemantle -M-Miidd mmaannttllee -L-Loowweerr MMaannttllee Seismology and the Earth’s Deep Interior The Earth’s Structure SphericallySpherically SymmetricSymmetric StructureStructure ParametersParameters wwhhichich cancan bebe determineddetermined forfor aa referencereferencemodelmodel -P-P--wwaavvee v veeloloccitityy -S-S--wwaavvee v veeloloccitityy -D-Deennssitityy -A-Atttteennuuaattioionn ( (QQ)) --AAnisonisotropictropic parame parametersters -Bulk modulus K -Bulk modulus Kss --rrigidityigidity µ µ −−prepresssuresure - -ggravityravity Seismology and the Earth’s Deep Interior The Earth’s Structure PREM:PREM: velocitiesvelocities andand densitydensity PREMPREM:: PPreliminaryreliminary RReferenceeference EEartharth MMooddelel (Dziewonski(Dziewonski andand Anderson,Anderson, 1981)1981) Seismology and the Earth’s Deep Interior The Earth’s Structure PREM:PREM: AttenuationAttenuation PREMPREM:: PPreliminaryreliminary RReferenceeference EEartharth MMooddelel (Dziewonski(Dziewonski andand Anderson,Anderson, 1981)1981) Seismology and the -
INTERIOR of the EARTH / an El/EMEI^TARY Xdescrrpntion
N \ N I 1i/ / ' /' \ \ 1/ / / s v N N I ' / ' f , / X GEOLOGICAL SURVEY CIRCULAR 532 / N X \ i INTERIOR OF THE EARTH / AN El/EMEI^TARY xDESCRrPNTION The Interior of the Earth An Elementary Description By Eugene C. Robertson GEOLOGICAL SURVEY CIRCULAR 532 Washington 1966 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director First printing 1966 Second printing 1967 Third printing 1969 Fourth printing 1970 Fifth printing 1972 Sixth printing 1976 Seventh printing 1980 Free on application to Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, VA 22202 CONTENTS Page Abstract ......................................................... 1 Introduction ..................................................... 1 Surface observations .............................................. 1 Openings underground in various rocks .......................... 2 Diamond pipes and salt domes .................................. 3 The crust ............................................... f ........ 4 Earthquakes and the earth's crust ............................... 4 Oceanic and continental crust .................................. 5 The mantle ...................................................... 7 The core ......................................................... 8 Earth and moon .................................................. 9 Questions and answers ............................................. 9 Suggested reading ................................................ 10 ILLUSTRATIONS -
The Earth's Crust Is Like the Skin of an Apple
The Earth’s Crust Weathering & Erosion ! " Soil begins with rocks – so how is rock turned into soil? ! " How does soil travel and move? ! " Without sediments our planet would decline, perhaps ceasing to exist Inside the Earth The Earth's Crust is like the skin of an apple. It is very thin in comparison to the other three layers. The crust is only about 3-5 miles (8 kilometers) thick under the oceans(oceanic crust) and about 25 miles (32 kilometers) thick under the continents (continental crust). The temperatures of the crust vary from air temperature on top to about 1600 degrees Fahrenheit (870 degrees Celcius) in the deepest parts of the crust Three Laws of Thermodynamics ! " The first law of thermodynamics, also called conservation of energy, states that the total amount of energy in the universe is constant. This means that all of the energy has to end up somewhere, either in the original form or in a different from. We can use this knowledge to determine the amount of energy in a system, the amount lost as waste heat, and the efficiency of the system. ! " The second law of thermodynamics states that the disorder in the universe always increases. After cleaning your room, it always has a tendency to become messy again. This is a result of the second law. As the disorder in the universe increases, the energy is transformed into less usable forms. Thus, the efficiency of any process will always be less than 100%. ! " The third law of thermodynamics tells us that all molecular movement stops at a temperature we call absolute zero, or 0 Kelvin (-273oC).