Prediction of Rodent Carcinogenicity Bioassays from Molecular Structure

Total Page:16

File Type:pdf, Size:1020Kb

Prediction of Rodent Carcinogenicity Bioassays from Molecular Structure Prediction of Rodent Carcinogenicity compounds. Numerous approaches have been taken to forming SARs for carcino- Bioassays from Molecular Structure Using genesis. Ashby and co-workers (2-4) developed a successful semiobjective Inductive Logic Programming method of predicting carcinogenesis based on the identification of chemical substruc- Ross D. King1 and Ashwin Srinivasan2 tures (alerts) that are associated with car- 1Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, cinogenesis. A similar but more objective approach was taken by Sanderson and London, United Kingdom; 2Computing Laboratory, University of Oxford, Earnshaw (5), who developed an expert Oxford, United Kingdom system based on rules obtained from expert chemists. An inductive approach, not The machine learning program Progol was applied to the problem of forming the directly based on expert chemical knowl- structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent edge, is the computer-automated structure bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic programming (ILP) algorithm to use a fully relational method for describing chemical structure in evaluation (CASE) system (6,7). This sys- SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs tem empirically identifies structural alerts for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for that are statistically related to a particular sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set of activity. A number of other approaches compounds that have been widely predicted by other SAR methods (the compounds used in the have been applied based on a variety of NTP's first round of carcinogenesis predictions). For these compounds no method (human or sources of information and SAR learning machine) was significantly more accurate than Progol. Progol was the most accurate method that methods (8-13). The effectiveness of these did not use data from biological tests on rodents (however, the difference in accuracy is not different SAR methods was evaluated on a significant). The Progol predictions were based solely on chemical structure and the results of test set of compounds for which predic- tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol tions were made before the trials were com- was estimated to be 63% (±3%) using 5-fold cross validation. A set of structural alerts for pleted (round 1 of the NTP's tests for carcinogenesis was automatically generated and the chemical rationale for them investigated- carcinogenesis prediction) (8,14,15) There these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity is currently a second round of tests. is predicted for the compounds used in the NTP's second round of carcinogenesis predictions. The machine-learning methodology The results for prediction of carcinogenesis, taken together with the previous successful Inductive Logic Programming (ILP) has applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of been applied to a number of SAR prob- angiogenesis by suramin analogues, show that Progol has a role to play in understanding the lems. Initial work was done using the pro- SARs of cancer-related compounds. Environ Health Perspect 104(Suppl 5):1031-1040 (1996) gram Golem to form SARs for the Key words: machine learning, artificial intelligence, SAR, National Toxicology Program inhibition of dihydrofolate reductase by pyrimidines (16-18). This work was extended by the development of the pro- gram Progol (19) and its adaptation for Introduction application to noncongeneric SAR prob- An understanding of the molecular structure with ability to cause cancer. This lems (20). Progol has been successfully mechanisms of chemical carcinogenesis is work has been greatly advanced by the long- applied to predicting the mutagenicity of a central to the prevention of many environ- term carcinogenicity tests of compounds in series of structurally diverse nitroaromatic mentally induced cancers. One approach is rodents by the National Toxicology compounds (21), and the inhibition of to form structure-activity relationships Program (NTP) of the National Institute angiogenesis by suramin analogues (20). (SARs) that empirically relate molecular of Environmental Health Sciences (1). The ProgolSAR method is designed to pro- These tests have resulted in a database of duce easily understandable rules (structural more than 300 compounds that have been alerts). For the nitroaromatic and suramin This paper is part of the NIEHS Predictive-Toxicology shown to be carcinogens or noncarcino- compounds the rules generated provided Evaluation Project. Manuscript received May 8, 1996; gens. The database of compounds can be insight into the chemical basis of action. manuscript accepted 9 August 1996. We thank M.J.E. Sternberg and S.H. Muggleton. used to form general SARs relating Most existing SAR methods describe This work was supported by ESPRIT (6020), the molecular structure to formation of cancer. chemical structure using attributes-gen- SERC project, experimental application and develop- The compounds in the NTP database eral properties of objects. Such descriptions ment of ILP, and the Imperial Cancer Research Fund. Address correspondence to R.D. King, Biomolecular present a problem for many conventional can be displayed in tabular form, with the Modelling Laboratory, Imperial Cancer Research Fund, SAR techniques because the compounds in compounds along one dimension and the Lincoln's Inn Fields, P.O. Box 123, London, WC2A 3PX, the NTP databases are structurally very attributes along the other dimension. This U.K. Telephone: +44 171 269 3565. Fax: +44 171 269 and different molecular of is at 3417. E-mail:[email protected] diverse, many type description very inefficient rep- Abbreviations used: CASE, computer-augmented mechanisms are involved. Most conven- resenting structural information. A more structure evaluation; DEREK, deductive estimation of tional SAR methods are designed to deal general method of describing chemical risk from existing knowledge; ILP, inductive logic pro- with a common molec- structure is to use or gramming; MTD, minimally toxic dose; NTP, National compounds having logical statements, rela- Toxicology Program; QSAR, quantitative structure- ular template and presumed similar molec- tions. This method is also clearer, as chem- activity relationship; SAR, structure-activity relationship. ular mechanisms of action-congeneric ists are used to relating chemical properties Environmental Health Perspectives - Vol 104, Supplement 5 * October 1996 1031 KING AND SRINIVASAN and functions for groups of atoms. The consisted of 291 compounds, 161 (55%) the examples. This guarantee of optimality Progol method is the first to use a general carcinogens and 130 noncarcinogens. In does not extend to sets of rules constructed relational method for describing chemical addition to this train/test split, a 5-fold by Progol, as it does not follow that a set of structure in SARs. The method is based on cross-validation split of the 330 compounds rules consisting of individually optimal using atoms and their bond connectivities was tested for a more accurate estimate of rules is itself optimal for information com- and is simple, powerful, and generally the efficacy of Progol. The compounds were pression. Information compression is applicable to any SAR. The method also randomly split into five sets, and Progolwas defined as the difference in the amount of appears robust and suited to SAR problems successively trained on four of the splits and information needed to explain the exam- difficult to model conventionally (21). tested on the remaining split. ples with and without using the rule. It is The most similar approaches to Progol statistically highly improbable that a rule are those of CASE (6), MULTICASE Progol with high compression does not represent a (7), and the symbolic machine learning In inductive logic programming (ILP) all real pattern in the data (24). The use of approaches of Bahler and Bristol (8) and the inputs and outputs are logical rules compression balances accuracy (number of Lee (22). However the Progol methodology (23) in the computer language PROLOG. correct predictions/number of total predic- is more general, as the other approaches are Such rules are easily understandable tions) and coverage (number of examples based on attributes and therefore have because they closely resemble natural lan- predicted by the rule/number of examples), built-in limitations in representing struc- guage. For any application the input to i.e., it is a compromise between sensitivity tural relationships. Progol consists of a set of positive examples and specificity. The validity of the com- This article describes application of the (i.e., for SAR, the active compounds), nega- pression measure was empirically shown by Progol SAR method to predicting chemical tive examples (i.e., nonactive compounds), the results of the 5-fold cross-validation carcinogenesis. Progol was first bench- and background knowledge about the trial. Progol generates rules in a stepwise marked on the test data of round 1 and problem (e.g., the atom/bond structure of manner until all the examples are covered then applied to produce predictions for the compounds) (Figure 1). Progol outputs or
Recommended publications
  • 162 Part 175—Indirect Food Addi
    § 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter.
    [Show full text]
  • Five Tyrosines and Two Serines in Human Albumin Are Labeled by the Organophosphorus Agent FP-Biotin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Chem. Res. Toxicol. 2008, 21, 1787–1794 1787 provided by PubMed Central Five Tyrosines and Two Serines in Human Albumin Are Labeled by the Organophosphorus Agent FP-Biotin Shi-Jian Ding,† John Carr,† James E. Carlson,‡ Larry Tong,§ Weihua Xue,§ Yifeng Li,† Lawrence M. Schopfer,§ Bin Li,§ Florian Nachon,| Oluwatoyin Asojo,† Charles M. Thompson,⊥ Steven H. Hinrichs,† Patrick Masson,| and Oksana Lockridge*,§ Department of Pathology and Microbiology, UniVersity of Nebraska Medical Center, Omaha, Nebraska 68198, Applied Biosystems, Framingham, Massachusetts 01701, Eppley Institute, UniVersity of Nebraska Medical Center, Omaha, Nebraska 68198, Centre de Recherches d SerVice de Sante´ des Arme´es, Unite´ d’Enzymologie, BP87, 38702 La Tronche Cedex, France, and Department of Biomedical and Pharmaceutical Sciences, UniVersity of Montana, Missoula, Montana 59812 ReceiVed April 23, 2008 Tyrosine 411 of human albumin is an established site for covalent attachment of 10-fluoroethoxyphosphinyl- N-biotinamidopentyldecanamide (FP-biotin), diisopropylfluorophosphate, chlorpyrifos oxon, soman, sarin, and dichlorvos. This work investigated the hypothesis that other residues in albumin could be modified by organophosphorus agents (OP). Human plasma was aggressively treated with FP-biotin; plasma proteins were separated into high and low abundant portions using a proteome partitioning antibody kit, and the proteins were digested with trypsin. The FP-biotinylated tryptic peptides were isolated by binding to monomeric avidin beads. The major sites of covalent attachment identified by mass spectrometry were Y138, Y148, Y401, Y411, Y452, S232, and S287 of human albumin. Prolonged treatment of pure human albumin with chlorpyrifos oxon labeled Y138, Y150, Y161, Y401, Y411, and Y452.
    [Show full text]
  • Aegls Brochure
    4.85 5 5 About the Board on Environmental Studies and Toxicology The Board on Environmental Studies and Toxicology addresses Types of Chemicals Covered in the AEGLs Series environmental pollution problems affecting human health, human impacts on the environment, and the assessment and management of risks to AEGLs values for the chemicals listed below were published in the first human health and the environment. The board’s reports answer questions six volumes of the AEGLs series. AEGLs for additional chemicals will about air and water pollution; solid and hazardous waste; toxicology; continue to be published in subsequent volumes. epidemiology; risk assessment; applied ecology; natural resources; and environmental engineering, economics, law, and policy. Allylamine Hydrogen fluoride Ammonia Iron pentacarbonyl Aniline Methyl hydrazine Arsine Methyl isocyanate About NRC Reports from the National Academies Protecting Chlorine Nerve agents GA [tabun], The National Academies, through its National Research Council reports, Chlorine dioxide GB [sarin], GD [soman], GF, provides a unique public service by working outside the framework of Chlorine trifluoride and VX the Public and government to ensure independent, expert advice on matters of science, Crotonaldehyde Nickel carbonyl technology, and medicine. Today, the National Academies include three Cyclohexylamine Phosgene honorary societies that elect new members to their ranks each year- Diborane Phosphine Emergency the National Academy of Sciences, the National Academy of Engineering, 1,1-Dichloro-1-fluoroethane Propylene glycol dinitrate and the Institute of Medicine-and the National Research Council, the (HCFC-141B) Sulfur mustard operating arm that conducts the bulk of the institution’s Dimethylhydrazine 1,1,1,2-Tetrafluoroethane Workers science-policy and technical work.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Table II. EPCRA Section 313 Chemical List for Reporting Year 2017 (Including Toxic Chemical Categories)
    Table II. EPCRA Section 313 Chemical List For Reporting Year 2017 (including Toxic Chemical Categories) Individually listed EPCRA Section 313 chemicals with CAS numbers are arranged alphabetically starting on page II-3. Following the alphabetical list, the EPCRA Section 313 chemicals are arranged in CAS number order. Covered chemical categories follow. Note: Chemicals may be added to or deleted from the list. The Emergency Planning and Community Right-to-Know Call Center or the TRI-Listed Chemicals website will provide up-to-date information on the status of these changes. See section B.3.c of the instructions for more information on the de minimis % limits listed below. There are no de minimis levels for PBT chemicals since the de minimis exemption is not available for these chemicals (an asterisk appears where a de minimis limit would otherwise appear in Table II). However, for purposes of the supplier notification requirement only, such limits are provided in Appendix C. Chemical Qualifiers Certain EPCRA Section 313 chemicals listed in Table II have parenthetic “qualifiers.” These qualifiers indicate that these EPCRA Section 313 chemicals are subject to the section 313 reporting requirements if manufactured, processed, or otherwise used in a specific form or when a certain activity is performed. An EPCRA Section 313 chemical that is listed without a qualifier is subject to reporting in all forms in which it is manufactured, processed, and otherwise used. The following chemicals are reportable only if they are manufactured, processed, or otherwise used in the specific form(s) listed below: Chemical/ Chemical Category CAS Number Qualifier Aluminum (fume or dust) 7429-90-5 Only if it is a fume or dust form.
    [Show full text]
  • Download Safety Assessment of BHT As Used in Cosmetics
    Safety Assessment of BHT as Used in Cosmetics Status: Re-Review for Panel Review Release Date: May 10, 2019 Panel Meeting Date: June 6-7, 2019 The 2019 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Alice Akinsulie, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Alice Akinsulie Scientific Analyst/Writer Date: May 10, 2019 Subject: Re-Review of the Safety Assessment of BHT (Butylated Hydroxytoluene) The CIR Expert Panel first published an assessment of BHT in 2002 with the conclusion “safe as used in cosmetic formulations” (BHT062019origrep). Minutes from is the original proceedings are included in this packet (BHT062019min). Because it has been at least 15 years since the report was published, in accord with CIR Procedures, the Panel should consider whether the safety assessment of BHT should be re-opened. An exhaustive search of the world’s literature was performed for studies dated 1997 forward. A brief synopsis of the relevant data is enclosed (BHT062019newdata).
    [Show full text]
  • Analysis of the Most Appropriate Risk Management Option (Rmoa) ______
    ANALYSIS OF THE MOST APPROPRIATE RISK MANAGEMENT OPTION (RMOA) _________________________________________________________________ Analysis of the most appropriate risk management option (RMOA) Substance Name: 2,6-di-tert-butyl-p-cresol EC Number: 204-881-4 CAS Number: 128-37-0 Authority: France Date: March 2016 Cover Note 2,6-di-tert-butyl-p-cresol (butylated hydroxytoluene (BHT)) belongs to the broad group of alkyl phenols and as alkyl phenol ethoxylates BHT is on the Danish EPA “List of Undesirable Substances” latest updated in 2009. The group was recently reviewed in a report: “Survey of alkyl phenols and alkyl phenol ethoxylates (Danish EPA 2012). The group includes substances that are hazardous to the environment and substances that have or may have endocrine disrupting effects. The substance is also listed in the Danish inventory of carcinogenic substances. BHT is included in the framework on the French national Strategy on Endocrine Disruptors (Stratégie Nationale sur les Perturbateurs Endocriniens or SNPE) in 2015. ANSES was commissioned by the French Competent Authority (Ministry of Ecology, Sustainable Development and Energy) and identified BHT as a good candidate for working further on its ED properties. Consequently, France initiated a RMOA on BHT, mainly focused on the ED properties of this substance. EC no 204-881-4 Anses (on behalf FR-MSCA) Page 1 sur 48 ANALYSIS OF THE MOST APPROPRIATE RISK MANAGEMENT OPTION (RMOA) _________________________________________________________________ Indeed, alerts on BHT come from different sources. BHT shares common uses with BHA, that was analysed within the framework of SNPE in 2014 and which has been identified numerous times as a potential endocrine disruptors: European Commission on Endocrine Disruption (EDC Database): Listed BHA as a Category 1 priority substance, based on evidence that it interferes with hormone function.
    [Show full text]
  • Bht) (Casrn 128-37-0)
    EPA/690/R-13/003F l Final 6-05-2013 Provisional Peer-Reviewed Toxicity Values for Butylated Hydroxytoluene (BHT) (CASRN 128-37-0) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER J. Phillip Kaiser, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY ICF International 9300 Lee Highway Fairfax, VA 22031 PRIMARY INTERNAL REVIEWERS Ghazi Dannan, PhD National Center for Environmental Assessment, Washington, DC Q. Jay Zhao, PhD, MPH, DABT National Center for Environmental Assessment, Cincinnati, OH This document was externally peer reviewed under contract to Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). i TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS ................................................................................... iii BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1 QUESTIONS REGARDING PPRTVS ...........................................................................................1
    [Show full text]
  • Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs
    toxins Review Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs Fuqiang Zhao 1,2, Ping Wang 3, Rima D. Lucardi 4 , Zushang Su 3 and Shiyou Li 3,* 1 College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, Liaoning, China; [email protected] 2 CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China 3 National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; [email protected] (P.W.); [email protected] (Z.S.) 4 Southern Research Station, USDA Forest Service, 320 Green Street, Athens, GA 30602, USA; [email protected] * Correspondence: [email protected] Received: 8 October 2019; Accepted: 16 December 2019; Published: 6 January 2020 Abstract: 2,4-Di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) is a common toxic secondary metabolite produced by various groups of organisms. The biosources and bioactivities of 2,4-DTBP have been well investigated, but the phenol has not been systematically reviewed. This article provides a comprehensive review of 2,4-DTBP and its analogs with emphasis on natural sources and bioactivities. 2,4-DTBP has been found in at least 169 species of bacteria (16 species, 10 families), fungi (11 species, eight families), diatom (one species, one family), liverwort (one species, one family), pteridiphyta (two species, two families), gymnosperms (four species, one family), dicots (107 species, 58 families), monocots (22 species, eight families), and animals (five species, five families).
    [Show full text]
  • Ttl Iii26 (C) 28
    USOO6610977B2 (12) United States Patent (10) Patent No.: US 6,610,977 B2 Megerle (45) Date of Patent: Aug. 26, 2003 (54) SECURITY SYSTEM FOR NBC-SAFE 5,692,029 A 11/1997 Husseiny et al. BUILDING 5,692,446 A 12/1997 Becker et al. 5,866.430 A 2/1999 Grow (75) Inventor: Clifford Megerle, Manassas, VA (US) 5,915,268 A 6/1999 Linker et al. 5,965,882 A 10/1999 Megerle et al. (73) Assignee: Lockheed Martin Corporation, 6,073,499 A 6/2000 Settles Bethesda, MD (US) 6,100,698 A 8/2000 Megerle et al. OTHER PUBLICATIONS * ) Notice: Subject to anyy disclaimer, the term of this patent is extended or adjusted under 35 U.S. Pub: 2003/0009661 A1, “Security System and Method U.S.C. 154(b) by 53 days. of Security Service Business”, Tsutsumi et al. (Jan. 9, 2003 ).* (21) Appl. No.: 09/969,050 * cited by examiner (22) Filed: Oct. 1, 2001 Primary Examiner John R. Lee O O ASSistant Examiner Zia R. Hashmi (65)65 PriorO PublicationCaO Data (74) Attorney, Agent, or Firm-Simpson & Simpson, PLLC US 2003/0085348 A1 May 8, 2003 (57) ABSTRACT (51) Int. Cl." ................................................ G01N 23/00 (52) U.S. Cl. ........................ 250,287: 250/286, 73,232. A method and apparatus for Screening an object for the 73/28.01, 73/23; 7323,36. 37s'ss. 37ss6. presence of an explosive, chemical warfare agent, biological s s s 37s?is6 warfare agent, drug, metal, weapon, and/or radioactive (58) Field of Search 250/287, 286; material.
    [Show full text]
  • Association Between Serum Uric Acid Levels, Nutritional and Antioxidant Status in Patients on Hemodialysis
    nutrients Article Association between Serum Uric Acid Levels, Nutritional and Antioxidant Status in Patients on Hemodialysis Etna Domínguez-Zambrano 1,2, José Pedraza-Chaverri 3 , Ana Laura López-Santos 1, Omar Noel Medina-Campos 3 , Cristino Cruz-Rivera 1, Francisco Bueno-Hernández 4 and Angeles Espinosa-Cuevas 1,* 1 Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutricion Salvador Zubirán, México City PC 14080, Mexico; [email protected] (E.D.-Z.); [email protected] (A.L.L.-S.); [email protected] (C.C.-R.) 2 Medicine Faculty, Universidad Nacional Autónoma de México, México City ZC 04510, Mexico 3 Chemistry Faculty, Universidad Nacional Autónoma de México, México City ZC 04510, Mexico; [email protected] (J.P.-C.); [email protected] (O.N.M.-C.) 4 Centro de Atención Renal, Estado de México ZC 53100, Mexico; [email protected] * Correspondence: [email protected]; Tel./Fax: +52-5655-0382 Received: 11 June 2020; Accepted: 3 August 2020; Published: 27 August 2020 Abstract: Purpose: To determine the relationship between uric acid (UA) and nutritional and antioxidant status in hemodialysis (HD) patients, given that hyperuricemia could be an indicator of good nutritional status possibly because of the antioxidant properties of UA. Methods: Cross-sectional study with 93 patients on HD. Hyperuricemia was considered as UA 6.0 mg/dL in females and ≥ 7.0 mg/dL in males. Nutritional variables were registered. Blood samples were taken before the ≥ dialysis session to determine oxidative damage as plasma malondialdehyde (MDA) content, and antioxidant capacity measuring 2,2-diphenyl-piclrylhidrazil radical (DPPH•) scavenging activity and oxygen radical absorbance capacity (ORAC) value.
    [Show full text]
  • Butylated Hydroxytoluene (BHT) Crops
    Butylated Hydroxytoluene (BHT) Crops 1 2 Executive Summary 3 A petition was filed with the NOSB to use butylated hydroxytoluene (BHT) as an antioxidant in a number of pheromone 4 formulations. Pheromones and BHT would be enclosed in a plastic matrix, allowing slow release of the materials into the 5 air. Due to low volatility of BHT, most of it would remain in the dispenser and direct contact with the crop would be 6 negligible. BHT is an alkylated cresol that can be synthesized several ways. The p-cresol starting material is isolated from 7 coal tar or petroleum. It is also obtained synthetically from toluene. The p-cresol is alkylated with isobutylene gas in the 8 presence of an acidic catalyst to produce BHT. It is used as an antioxidant in food, and is also used as a stabilizer in 9 pesticides, gasoline, lubricants, soaps and cosmetics, and as an antiskinning agent in paints and inks. 10 11 The material has not been reviewed by NOSB before, and because it is synthetic and on List 3, is currently prohibited for 12 use in organic production under the National Organic Program Standards. However, pheromone formulations that use 13 BHT have been widely used by organic farmers. Impacts on the environment and human health from this application 14 should be negligible. The TAP reviewers unanimously concluded that BHT should be added to the National List as an 15 allowed synthetic with the annotation: for use in organic crop production systems as an antioxidant for pheromones 16 enclosed in plastic dispensers. The reviewers were all concerned with the precedent that this set, and made it clear that 17 addition to the National List should be made only if application and use is limited.
    [Show full text]