Boxelder Bug
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pest Alert: Brown Marmorated Stink Bug Halyomorpha Halys
OREGON DEPARTMENT OF AGRICULTURE FACT SHEETS AND PEST ALERTS Pest Alert: Brown Marmorated Stink Bug Halyomorpha halys Introduction Brown Marmorated Stink Bug The brown marmorated stink bug (BMSB), Halyomorpha adult nymph newly-hatched halys, is an Asian species first detected in North America nymphs in Pennsylvania in 1996, and in Oregon in 2004. BMSB has since been detected in 43 states. In Oregon it is es- tablished statewide, in the western region from Portland to Ashland, and in the north east to Hood River. More recently it has been found in coastal counties and is likely still expanding its range and increasing in abundance around Oregon. A threat to Oregon agriculture BMSB is a major agricultural pest in Asia, attacking many crops. It is a significant agricultural pest in the Mid-At- lantic states of the U.S., attacking tree fruits, peppers, tomatoes, corn, berries, grapes, soybeans, melons, and even damaging young trees by feeding through the bark. BMSB is known to feed on over 170 species of plants. The insect threatens an estimated $21 billion worth of crops in the United States alone. Some commercial agri- cultural damage by BMSB has been reported in Oregon. Some home gardeners have reported extensive damage to beans, cucumbers, raspberries, hops, and several species A brown marmorated stink bug feeding on a mature hazelnut. BMSB of ornamental plants. is able to feed on tree nuts through the shell using its long mouthparts. Damage to crops Stink bugs feed by inserting their long, straw-like mouth parts into plants and sucking out the liquid inside. -
Insects That Feed on Trees and Shrubs
INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, -
Boxelder Bug Nuisance Management for Homeowners
CIS 1155 Boxelder Bug Nuisance Management for Homeowners by Danielle Gunn and Edward John Bechinski Boxelder bugs are a common nuisance pest in Figure 1. Idaho homes and yards. Although not particu- Comparative larly harmful, these insects can be aggravating life-size boxelder when they are searching for places to spend the bug 1st-stage winter. nymph (left) and adult (right). This publication will help you understand both the seasonal biology of boxelder bugs in Idaho, and landscape features that increase pest prob- lems. We discuss the relative importance of these insects as pests. Practical steps you can take to reduce nuisance problems include alternatives to insecticides and safe, effective insecticide use. Identification Boxelder bugs develop through three life stages: eggs, nymphs, and adults. Figure 1 shows the actual body sizes of a newly hatched nymph and a mature adult. Adults are the most commonly encountered life Figure 2. Adult boxelder bugs, Boisea trivittata, are stage. Adult boxelder bugs are flattened, elon- distinctively marked with red lines on a slate-gray back- gate insects approximately one-half-inch long ground. (not including antennae). Overall upper body color is slate gray to black. Reddish orange lines appear behind the head and along the sides of the body (Figure 2). The rest of the body under the wings is red with two rows of black spots. Legs and antennae are black. Eggs. Small red eggs occur in clusters on box- elder and maple trees. Elongate eggs one-six- teenth-inch long are laid in groups of about ten on the bark and leaves of host trees and sur- rounding areas. -
Hemiptera: Heteroptera) with a Review of the Eggs of This Family
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2010 Volume 50(1), pp. 75–95 ISSN 0374-1036 The external morphology of eggs of three Rhopalidae species (Hemiptera: Heteroptera) with a review of the eggs of this family Jitka VILÍMOVÁ & Markéta ROHANOVÁ Charles University, Faculty of Science, Department of Zoology, Viničná 7, CZ-128 44 Praha 2, Czech Republic; e-mail: [email protected]; [email protected] Abstract. The external morphology of eggs and manner of oviposition of three rhopalid species, Brachycarenus tigrinus (Schilling, 1829), Chorosoma schillingi (Schilling, 1829) and Rhopalus (Aeschyntelus) maculatus (Fieber, 1837) are described. The eggs were studied using Scanning Electron Microscopy (SEM), and the results complete previous observations.The emphasis of the study is on the characteristics of eggs and details of oviposition in representatives of the family Rhopalidae. The chorionic origin of attachment stalk was confi rmed only in the Chorosomatini. A completely smooth egg chorion was recognized in R. (A.) maculatus, as a unique condition within at least the Pentatomomorpha. Key words. Rhopalidae, Rhopalini, Chorosomatini, Brachycarenus tigrinus, Cho- rosoma schillingi, Rhopalus (Aeschyntelus) maculatus, egg structure, micropylar processes, chorion, attachment stalk, oviposition Introduction Heteroptera eggs have a stable shape due to a sclerotized chorion. Egg morphology is helpful for taxonomic and phylogenetic purposes. The morphology of heteropteran eggs varies distinctly among taxa; for details see two monographs: SOUTHWOOD (1956) and COB- BEN (1968). Both authors mentioned that the eggs of the coreoid family Rhopalidae have a specifi c morphological pattern (e.g. two micropylar processes). COBBEN (1968) not only compared the morphology of heteropteran eggs but made phylogenetic inferences from their important characters. -
Boxelder Bug Boisea Trivittata (Say); Family: Rhopalidae
IDL INSECT DIAGNOSTIC LABORATORY Cornell University, Dept. of Entomology, 2144 Comstock Hall, Ithaca NY 14853-2601 Boxelder Bug Boisea trivittata (Say); Family: Rhopalidae Boxelder bug (adult); actual size about 1/2 inch long. Photo © 2012 by Jason J. Dombroskie. Injury The boxelder bug may be a pest of outdoor trees as well as a household nuisance. It is the latter that is of most concern to homeowners. The bugs overwinter as adults and nymphs in protected dry places, often in wall voids or attics of houses and buildings. During warm days in the fall and again in the spring, the bugs become active and invade homes, creating a nuisance. They do not feed while indoors. Description The adult boxelder bug is about 1/2 inch in length, and brownish-black in color, with red stripes on the thorax and wing margins. The body is also bright red. Eggs are straw-yellow to rusty-red in color and are not often seen, as they are deposited on boxelder trees (Acer negundo) or other maples, or near the trees. The nymphs, which are found on the trees, are bright red in color with the front half darker. Nymphs resemble adults but do not have fully developed wings and are not able to reproduce. The change from nymph to adult is a gradual one. Life History The boxelder bugs pass the winter in the adult and sometimes nymphal stages in dry, sheltered places where they have accumulated in gregarious masses. They often choose buildings or houses as a protected place to overwinter. When weather warms up in the spring, the bugs leave their places of hibernation to fly to boxelder trees, where they deposit their eggs. -
SP341-H Boxelder Bugs and Red-Shouldered Bugs
Agricultural Extension Service The University of Tennessee SP341-H Insects Boxelder Bugs and Red-Shouldered Bugs Karen Vail, Associate Professor, Frank Hale, Associate Professor, Entomology and Plant Pathology, and William Klingeman, Assistant Professor, Plant Sciences & Landscape Systems Originally developed by Harry Williams, Professor Emeritus, Entomology and Plant Pathology Boxelder bugs, Boisea trivittata (Say), are a nui- Identification sance, especially during the cool autumn months when Adult boxelder bugs are flat, about 1/2 inch long, they cluster in large numbers on the sides of trees, 1/3 inch wide and dark brownish-black with three houses and other structures. This pest enters buildings lengthwise red stripes on the pronotum (area behind through cracks and openings and spends the winter the head). Wings are thick and leathery at the base and hibernating behind exterior siding and in attics, soffits, membranous at the tip. There are red veins in the wall voids, window/door casings and similar protected wings; the abdomen is bright red under the wings areas. Boxelder bugs may also take refuge in soil and (Figure 1). The nymphs resemble the adults in shape leaf litter next to foundations. With the onset of warmer except they are smaller, wingless and bright red. Eggs weather in late winter and spring, these bugs become are red (Figure 2). Boxelder bugs are found through- active and emerge from their overwintering sites. As out the state. they attempt to escape to their natural habitat outdoors, It has recently come to our attention that another some inadvertently disperse inward into living areas, bug, the red-shouldered bug, Jadera haematoloma emerging from beneath baseboards, behind window and (Herrich-Schaffer), has been confused with boxelder door frames, from within sash-cord openings and bugs. -
Eastern Boxelder Bug, Boisea Trivittata (Hemiptera: Rhopalidae) Confirmation in Arkansas S
Journal of the Arkansas Academy of Science Volume 69 Article 24 2015 Eastern Boxelder Bug, Boisea trivittata (Hemiptera: Rhopalidae) Confirmation in Arkansas S. W. Chordas III Ohio State University C. T. McAllister Eastern Oklahoma State College, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Chordas, S. W. III and McAllister, C. T. (2015) "Eastern Boxelder Bug, Boisea trivittata (Hemiptera: Rhopalidae) Confirmation in Arkansas," Journal of the Arkansas Academy of Science: Vol. 69 , Article 24. Available at: http://scholarworks.uark.edu/jaas/vol69/iss1/24 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 69 [2015], Art. 24 The Eastern Boxelder Bug, Boisea trivittata (Hemiptera: Rhopalidae): Confirmation in Arkansas S.W. Chordas III1 and C.T. McAllister2* 1Center for Life Sciences Education, The Ohio State University, 260 Jennings Hall, 1735 Neil Avenue, Columbus, OH 43210 2Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 *Correspondence: [email protected] Running Title: The Eastern Boxelder Bug in Arkansas The documented hemipteran fauna of Arkansas has grown tremendously since taxa listed in Henry and Froeschner (1988). -
Research Progress Reports for Pierce's Disease and Other
2019 Research Progress Reports Research Progress Reports Pierce’s Disease and Other Designated Pests and Diseases of Winegrapes - December 2019 - Compiled by: Pierce’s Disease Control Program California Department of Food and Agriculture Sacramento, CA 95814 2019 Research Progress Reports Editor: Thomas Esser, CDFA Cover Design: Sean Veling, CDFA Cover Photograph: Photo by David Köhler on Unsplash Cite as: Research Progress Reports: Pierce’s Disease and Other Designated Pests and Diseases of Winegrapes. December 2019. California Department of Food and Agriculture, Sacramento, CA. Available on the Internet at: https://www.cdfa.ca.gov/pdcp/Research.html Acknowledgements: Many thanks to the scientists and cooperators conducting research on Pierce’s disease and other pests and diseases of winegrapes for submitting reports for inclusion in this document. Note to Readers: The reports in this document have not been peer reviewed. 2019 Research Progress Reports TABLE OF CONTENTS Section 1: Xylella fastidiosa and Pierce’s Disease REPORTS • Addressing Knowledge Gaps in Pierce’s Disease Epidemiology: Underappreciated Vectors, Genotypes, and Patterns of Spread Rodrigo P.P. Almeida, Monica L. Cooper, Matt Daugherty, and Rhonda Smith ......................2 • Testing of Grapevines Designed to Block Vector Transmission of Xylella fastidiosa Rodrigo P.P. Almeida ..............................................................................................................11 • Field-Testing Transgenic Grapevine Rootstocks Expressing Chimeric Antimicrobial -
Boisea Rubrolineata (Barber) (Heteroptera: Rhopalidae)
THE CHEMICAL ECOLOGY OF HOST FORAGING, AGGREGATION, AND PROPHYLACTIC MICROBIAL DEFENSE IN THE WESTERN BOXELDER BUG, BOISEA RUBROLINEATA (BARBER) (HETEROPTERA: RHOPALIDAE) by Joseph J. Schwarz B.A. (BioI. Major/Chern. Minor), Kean University, 2002 THESIS SUBMITTED IN FULFILLNIENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department ofBiological Sciences © Joseph J. Schwarz SIMON FRASER UNIVERSITY Summer 2008 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission ofthe author. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-58614-3 Our file Notre référence ISBN: 978-0-494-58614-3 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. -
Investigations of Posible Chemical and Acoustic
PEAR PEST MANAGEMENT RESEARCH FUND PROJECT REPORT: 2006 Title: Investigations of Possible Chemical and Acoustic Communication in Boxelder Bug, Leptocoris (=Boisea) spp. (Hemiptera: Rhopalidae) Principal Investigator: Jocelyn G. Millar, Professor, Dept. of Entomology, University of California, Riverside CA 92521. FAX: 951 827 3086. Email: [email protected] Cooperator: Lucia Varella, IPM Advisor, North Coast Abstract: Box elder bugs proved to be easy to maintain and lived a long time in the laboratory as adults, but it was remarkably difficult to induce the adults to break reproductive diapause. We found no evidence of acoustic or vibrational signals being used for communication. However, male bugs were strongly attracted to odors of live males or females in two-choice Y-tube olfactometer bioassays; females appeared to be less strongly attracted. Bioassays using live bugs in cages were not successful: the test bugs simply aggregated at the top of the cage. The profile of odors collected from males and females appeared to be similar, and the antennae of males and females showed the same pattern of relatively weak responses to components in the odor extracts. Thus, the formation of the aggregations of bugs seen in the field and in the laboratory may be mediated by species-specific but not sex-specific blends of insect-produced odors. The detailed analysis and reconstruction of these blends will be the focus of work in the coming year. Introduction: Boxelder bugs (Leptocoris or Boisea spp.) are chronic pests of pears in some parts of California, particularly near riparian areas (Anonymous 1991). These insects tend to be found in clumped distributions in the field, and they are well known from their large, overwintering aggregations, in which they often invade houses and create a nuisance for homeowners. -
Host-Specificity of Monoxenous Trypanosomatids: Statistical
Protist, Vol. 166, 551–568, November 2015 http://www.elsevier.de/protis Published online date xxx ORIGINAL PAPER Host-specificity of Monoxenous Trypanosomatids: Statistical Analysis of the Distribution and Transmission Patterns of the Parasites from Neotropical Heteroptera a b b c,1 Eugene Kozminsky , Natalya Kraeva , Aygul Ishemgulova , Eva Dobáková , c,d,e f b,d Julius Lukesˇ , Petr Kment , Vyacheslav Yurchenko , d,g h,2 Jan Votypka´ , and Dmitri A. Maslov a Zoological Institute, Russian Academy of Sciences, St.-Petersburg, 199034, Russia b Life Science Research Centre, University of Ostrava, 70200 Ostrava, Czech Republic c ˇ Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceské Budejoviceˇ (Budweis), Czech Republic d ˇ Faculty of Science, University of South Bohemia, 37005 Ceské Budejoviceˇ (Budweis), Czech Republic e Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada f Department of Entomology, National Museum, 19300 Prague, Czech Republic g Department of Parasitology, Faculty of Science, Charles University, 12843 Prague, Czech Republic h Department of Biology, University of California - Riverside, Riverside, CA 91521, USA Submitted May 28, 2015; Accepted August 18, 2015 Monitoring Editor: Michael Melkonian Host-parasite relationships and parasite biodiversity have been the center of attention for many years; however the primary data obtained from large-scale studies remain scarce. Our long term investigations of trypanosomatid (Euglenozoa: Kinetoplastea) biodiversity from Neotropical Heteroptera have yielded almost one hundred typing units (TU) of trypanosomatids from one hundred twenty host species. Half of the parasites’ TUs were documented in a single host species only but the rest were found parasitizing two to nine species of hosts, with logarithmic distribution best describing the observed distribution of parasites among hosts. -
Boxelder Bug.Indd
A Horticulture Information article from the Wisconsin Master Gardener website, posted 3 Oct 2016 Boxelder Bug, Boisea trivittatus Boxelder bugs (Boisea trivittatus, Family Rhopalidae, scentless plant bugs) are common insects from mid-summer through fall, and sometimes in spring. The gray and red adults are about ½ inch long. Nymphs (immatures) are bright red with darker heads and look like the adults, but without developed wings. They tend to be most abundant after summers with a very warm May followed by a dry July, but their numbers also vary a lot from place to place regardless of the previous months’ weather. After the adult bugs emerge from overwintering sites in the spring, females deposit small, red eggs on host plants. The nymphs hatch in 10 to 14 days. During the summer An adult boxelder bug. they are found primarily on female boxelder trees (Acer negundo) where they feed by sucking plant sap from leaves and developing seeds. They can be found on other plants, such as ash, maple and occasionally on strawberries, grasses, and various other plants, but normally cannot complete their development on these other plants. They rarely cause signifi cant damage to any plants. Nymphs mature into adults by mid-summer, and these adults lay eggs for a second generation. The adults that develop from these eggs leave the trees to fi nd places Boxelder bug nymphs feeding on to spend the winter. They boxelder seeds. continue to be active late into the fall, and are often seen congregating in sunny spots on the south sides of buildings, trees and rocks on warm afternoons.