Stink Bugs of Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Stink Bugs of Oregon OREGON DEPARTMENT INTRODUCTION BODY PARTS LIFE CYCLE PREDATORS OF AGRICULTURE GUIDES Stink bugs are insects in the order Hemiptera, known When the weather warms in the spring and the days get to entomologists as the “true bugs.” True bugs are longer, adult stink bugs come out of hibernation to feed, Apoecilus bracteatus P. maculiventris, Adult Adult Podisus brevispinus, characterized by having sucking mouthparts that mate, and lay eggs. These adults will die a few weeks Size: 13 – 17 mm Podisus maculiventris they use to suck juices from plants or prey. More later, but their offspring will hatch and develop through Description: Pale orange, pink, or tan Spined soldier bugs specifically, stink bugs are in the family Pentatomidae, the summer. Stink bug egg clusters can have seven to as with solid red antennae. Abdomen Size: 8.5 – 13 mm and are distinguished from other hemipterans by many as fifty eggs, varying by species. After hatching, the with alternating dark bands along having five antennal segments (penta = five, tomo young insects, called nymphs, go through five “instars”, or the edge. Apoecilus is univoltine Description: Adults are mottled light brown to tan dorsally, but can = part); other hemipterans have four or less. When immature stages, before molting into a winged adult. The and overwinters in the egg stage. The defensive fluid smells putrid. appear to be slightly red or pink disturbed, stink bugs emit defensive liquids from first instars generally remain on the egg cluster but later It has been reported that nymphs and adults are generally or on the hemelytra. Pronotum their scent glands that can have a strong odor and instars can be very mobile. The different stages can be solitary but will aggregate to molt. often with pointed “spines” P. brevispinus, Adult a bad taste to discourage predators. Although most distinguished by their relative size to one another and the on the hind angles, but these Hosts: Predacious on Lepidoptera larvae, including fall can also be rounded. Wing are herbivorous on a wide variety of plants, a few are development of the wing pads on the later instars. There webworm, and some leaf beetle larvae and sawfly larvae. membranes often have a central predacious on other insects. Over 50 known stink is variation between species and some stages can be Nymphs and adults have been found on golden rod and black stripe. Antennae are solid bug species have been found in Oregon. This guide difficult to discern. Stink bug nymphs will always complete alfalfa. tan colored. Podisus brevispinus can be distinguished from features some of the common species, and some five instars before molting into adults. Range: Have been collected in Oregon from western, south P. maculiventris by and central regions. Occurs in the northern United States, close relatives, that growers and others might find on the presence of a Eggs 2nd instar 5th instar and in the western states, south to New Mexico and their farms, in their gardens, or in their homes. For small spine that Colorado. species with common names, they are provided under extends forward the scientific name, but not all species possess a from the abdomen Perillus bioculatus between the base common name. In Oregon, a few species of stink bug Two-spotted stinkbug of the hind legs on P. maculiventris, which is not present can be nuisance or agricultural pests, but most are not or does not reach the hind legs on P. brevispinus. considered pests and none are dangerous to people. Size: 8.5 – 11 mm Hosts: Podisus species are predators on many pest This guide is intended to aid you with identifying stink Description: Mostly black with bright species, and are important in many integrated bugs that you find around the state to help with pest red or orange markings. Pronotum pest management systems. They primarily feed on red with two black marks. Head management decisions or to satisfy your curiosity. Adult Lepidoptera larvae, but because they are opportunistic black with solid black antennae. will feed on many other types of insects. Edge of scutellum with red marks. Color can be variable, from red to Range: Both species are found across the United States ATTRACTIVE PLANTS orange to very pale orange. Color 5th instar and have been collected statewide in Oregon. Stink Bugs These plants are attractive to many species of stink on hemelytra can be present or bugs throughout the spring and summer: not, but there are always two black Zicrona caerulea marks in a field of color on the • Antelope bitterbrush (Purshia tridentata) pronotum. Nymphs have black or Blue shieldbug At the end of the summer, as days get cooler and of Oregon • English holly (Ilex aquifolium) metallic blue wingpads and bright Size: 4.5 – 9 mm shorter, adults will begin to move into hibernation areas abdomens. • Hawthorn (Crataegus spp.) and settle down for the winter. Most adult stink bugs Description: Distinctive dark blue Hosts: Perillus bioculatus nymphs to black metallic color both • Himalayan blackberry (Rubus armeniacus) spend the winter in leaf litter or under tree bark, but A guide to members of the insect family are voracious predators of the Colorado potato beetle dorsally and ventrally. Legs and and other Rubus sp. some, like the brown marmorated stink bug, will gather (Leptinotarsa decimlineata). Nymphs and adults will feed on antennae are black. Adult Pentatomidae and their relatives the beetle eggs and larvae. • Oregon grape (Mahonia aquifolium) in structures. Some stink bugs are univoltine, or have a Photo by Thomas Shahan commonly found in Oregon Hosts: Predacious on beetle • Red alder (Alnus rubra) single generation per year, but others are multivoltine, Range: Occurs statewide across Oregon, and across the larvae, particularly leaf beetles, and Lepidoptera larvae completing two or three depending on summer United States. (according to literature outside of North America). In • Tree of Heaven (Ailanthus altissima) conditions. (Image adapted from illustrations in The Britain, said to occur on low vegetation habitats such as • Wild carrot (Daucus carota) Developmental Stages of Some Species of the Japanese heathland, damp grassland, and low woodlands. They are solitary and overwinter as an adult. • Wild and weedy grasses Pentatomoidea (Hemiptera), Kobayashi 1967). Range: Found across the United States and has been collected statewide in Oregon. STINK BUGS For more Banasa dimidiata Chinavia hilaris Chlorochroa ligata Chlorochroa rossiana Thyanta custator Adult Adult Adult Green stink bug Conchuela bug Red-shouldered stink bug information Size: 7 – 10 mm Size: 10 – 15 mm 13 – 19 mm 13 – 20 mm 10 – 11 mm Description: Distinctive bi-colored Size: Size: Description: Bright green oval shape Size: pronotum; green towards the head Description: One of the largest stink Description: Ranges from bright to dark with yellow edges along abdomen. Description: Pale to light green, Oregon Department of Agriculture and red towards the abdomen. bugs in Oregon. Uniform bright green (almost black in some regions) Small depression running along often with a distinctive red stripe Body usually glossy with small dark green color, abdomen has distinctive with a bright band along the edge the middle of the scutellum. Juga across the pronotum, but are also Insect Pest Prevention & Adult punctures. Scutellum often green Adult black marks or notches along the of pronotum and abdomen ranging extend just past the tylus. If small often light brown or tan with no Management Program with light spot on the tip. Hemelytra outer edge. Antennae dark with from red to yellow. Antennae are spots are present on the base of the stripes or distinctive markings. 635 Capitol St. NE green or red. Antenna tan to green light bands. Edges of body may solid black. Many have a lighter scutellum, they are weak and indistinct, otherwise they are Wing membranes with scattered with dark tips. Head is reddish be tinged with yellow. Nymphs are colored spot at the tip of the 5th instar not present. Wing membrane is clear or colorless. Antennae dark spots. Nymphs are dark Salem, OR 97301 with dark punctures. Color of this brightly colored with black wingpads scutellum. Nymphs tend to be are dark, except for the first segment which is green. brown to black. Early nymphs Adult www.oregon.gov/ODA species is highly variable. Often and white and green striped mostly black except for the margins Literature on this species is scarce. have two distinctive pale spots on referred to as B. dimiata in literature. abdomens. Very young nymphs of their abdomen and pronotum, opposite sides of their abdomens Hosts: Found on Oregon grape, spectacle pod (Dithyrea (503) 986-4621 Nymphs have a dark thorax with a have an orange pronotum. Older which is white to yellow. In other maritma), groudsel (Senecio vulgaris), clover (Trifolium and appear hairy compared tan abdomen and are often more nymphs have orange patches on regions of the country, the color is spp.), alfalfa (Medicago sativa), and cocklebur (Xanthium to other stink bug nymphs. Photos and illustrations by Chris Hedstrom, unless oval than round when compared the edge of the pronotum, which highly variable. Wings reportedly strumarium). Thyanta custator is very closely otherwise noted. Information written and compiled to other stink bug nymphs. Banasa 5th instar nymphs of other species in Oregon 5th instar with purple flecks on specimens related to T. pallidovirens and by Chris Hedstrom using various published tumidifrons and B. rolstoni are do not have. Often referred to as outside of Oregon and Washington. Range: Specimens in Oregon collected from Central and SE they are morphologically other species that are also reported Acrosternum hilare in literature. Defensive liquid smells sour and Oregon, but entire range is unknown. indistinguishable, but there is sources. Please inquire for references. 2nd instar 3rd instar from Oregon.
Recommended publications
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • Zootaxa, a New South American Species of Banasa Stål (Hemiptera
    Zootaxa 2559: 47–57 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new South American species of Banasa Stål (Hemiptera: Heteroptera: Pentatomidae: Pentatominae): from egg to adult LUIZ ALEXANDRE CAMPOS1, JOCELIA GRAZIA1,2, THEREZA DE ALMEIDA GARBELOTTO1, FILIPE MICHELS BIANCHI1 , & NARA CORAL LANZARINI3 1Universidade Federal do Rio Grande do Sul, Dep. Zoologia, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre RS, Brasil. E-mail: [email protected] 2CNPq fellowship. E-mail: [email protected] 3Universidade do Extremo Sul Catarinense, Lab. de Interação Animal-Planta, Av. Universitária 1105 C.P. 3167, 88806-000 Criciúma SC, Brasil Abstract Banasa maculata sp. nov. is described from a Brazilian Atlantic Forest, including immature stages and aspects of its life history. Adults and nymphs were reared in laboratory and fed on fruits of Miconia sellowiana (Melastomataceae). Eggs and first instars of B. maculata are similar to those of other species of Banasa; however, the color pattern of the abdomen distinguishes B. maculata, particularly first, fourth, and fifth instars. Light and dark morphs were observed for third, fourth, and fifth instars. Head-width measurements overlap only between fourth and fifth instars. Eggs of B. maculata, in S.E.M., show a reticulate pattern with deep cells and irregular rims. The most frequent size of an egg clutch was 12. Average duration of the immature stages (egg to adult) was 37.6 ± 13.24 days. The highest mortality occurred in the fifth instar (45.9%). Banasa maculata belongs to the “cuspidata group” of Banasa because of the presence of an apical projection of each posterolateral angle of the pygophore.
    [Show full text]
  • Pest Alert: Brown Marmorated Stink Bug Halyomorpha Halys
    OREGON DEPARTMENT OF AGRICULTURE FACT SHEETS AND PEST ALERTS Pest Alert: Brown Marmorated Stink Bug Halyomorpha halys Introduction Brown Marmorated Stink Bug The brown marmorated stink bug (BMSB), Halyomorpha adult nymph newly-hatched halys, is an Asian species first detected in North America nymphs in Pennsylvania in 1996, and in Oregon in 2004. BMSB has since been detected in 43 states. In Oregon it is es- tablished statewide, in the western region from Portland to Ashland, and in the north east to Hood River. More recently it has been found in coastal counties and is likely still expanding its range and increasing in abundance around Oregon. A threat to Oregon agriculture BMSB is a major agricultural pest in Asia, attacking many crops. It is a significant agricultural pest in the Mid-At- lantic states of the U.S., attacking tree fruits, peppers, tomatoes, corn, berries, grapes, soybeans, melons, and even damaging young trees by feeding through the bark. BMSB is known to feed on over 170 species of plants. The insect threatens an estimated $21 billion worth of crops in the United States alone. Some commercial agri- cultural damage by BMSB has been reported in Oregon. Some home gardeners have reported extensive damage to beans, cucumbers, raspberries, hops, and several species A brown marmorated stink bug feeding on a mature hazelnut. BMSB of ornamental plants. is able to feed on tree nuts through the shell using its long mouthparts. Damage to crops Stink bugs feed by inserting their long, straw-like mouth parts into plants and sucking out the liquid inside.
    [Show full text]
  • Household Insects of the Rocky Mountain States
    Household Insects of the Rocky Mountain States Bulletin 557A January 1994 Colorado State University, University of Wyoming, Montana State University Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Milan Rewerts, interim director of Cooperative Extension, Colorado State University, Fort Collins, Colorado. Cooperative Extension programs are available to all without discrimination. No endorsement of products named is intended nor is criticism implied of products not mentioned. FOREWORD This publication provides information on the identification, general biology and management of insects associated with homes in the Rocky Mountain/High Plains region. Records from Colorado, Wyoming and Montana were used as primary reference for the species to include. Mention of more specific localities (e.g., extreme southwestern Colorado, Front Range) is provided when the insects show more restricted distribution. Line drawings are provided to assist in identification. In addition, there are several lists based on habits (e.g., flying), size, and distribution in the home. These are found in tables and appendices throughout this manual. Control strategies are the choice of the home dweller. Often simple practices can be effective, once the biology and habits of the insect are understood. Many of the insects found in homes are merely casual invaders that do not reproduce nor pose a threat to humans, stored food or furnishings. These may often originate from conditions that exist outside the dwelling. Other insects found in homes may be controlled by sanitation and household maintenance, such as altering potential breeding areas (e.g., leaky faucets, spilled food, effective screening).
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Work History Teacher's Assistant, Animal Behavior, Brown University
    BILLY A. KRIMMEL Academic Training Sc.B. Brown University, 2008 (Human Biology); Honors in Biology Current Position Ph.D. Candidate in Ecology at UC Davis (Jay Rosenheim’s laboratory), 2009-; dissertation title: Plant traits and plant-herbivore-omnivore interactions Work History Teacher’s Assistant, Animal Behavior, Brown University, 2006, 2007 Teacher’s Assistant, Behavioral Ecology, Brown University, 2008 Instructor, All Kids Are Scientists (AKA Science), Portland OR, 2008-2009 Teacher’s Assistant, Introduction to Ecology and Evolution, UC Davis, 2010, 2011 Guest Instructor, Freshman Entomology Seminar, UC Davis, 2011 Guest Lecturer, California Wildflowers, American River College, 2014 Honors and Awards Royce Society Fellow, Brown University, 2006-2008 Senior Prize in Biology, Brown University, 2008 NSF Graduate Research Fellowship (GRF), 2011- 2014 Jastro Shields Fellowship, UC Davis, 2011 Robert van den Bosch Scholarship, University of California, 2012, 2013, 2014 UC Directors' Scholarship, UC Davis, 2013, 2014 Mildred Mathias Scholarship, University of California, 2013 Finalist, Lots of Opportunity Competition, Louisville, KY, 2014 UC Davis Business Development Fellow, 2014-2015 Publications Krimmel BA & Wheeler AG (in review) Hostplant stickiness disrupts novel ant-mealybug association. Arthropod-Plant Interactions Wheeler AG & Krimmel BA (in press) Mirid (Heteroptera) specialists of sticky plants: Adaptations, Interactions, and Ecological Implications. Annual Review of Entomology. Publication date: January 2015 Krimmel BA & Pearse IS (2014) Generalist and sticky plant specialist predators effectively suppress herbivores on a sticky plant. Arthropod-Plant Interactions 8: 403-410 Krimmel BA (2014) Why plant trichomes might be better than we think for predatory insects. Pest Management Science 70(11): 1666-1667 Wheeler AG & Krimmel BA (2014) Kleidocerys obovatus Van Duzee (Hemiptera: Lygaeidae: Ischnorhynchinae): New Distribution Records and Habits of an Apparent Seed Specialist on Cypress, Hesperocyparis spp.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States
    Journal of Integrated Pest Management (2017) 8(1):11; 1–14 doi: 10.1093/jipm/pmx004 Profile Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States Robert L. Koch,1,2 Daniela T. Pezzini,1 Andrew P. Michel,3 and Thomas E. Hunt4 1 Department of Entomology, University of Minnesota, 1980 Folwell Ave., Saint Paul, MN 55108 ([email protected]; Downloaded from https://academic.oup.com/jipm/article-abstract/8/1/11/3745633 by guest on 08 January 2019 [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 210 Thorne, 1680 Madison Ave. Wooster, OH 44691 ([email protected]), and 4Department of Entomology, University of Nebraska, Haskell Agricultural Laboratory, 57905 866 Rd., Concord, NE 68728 ([email protected]) Subject Editor: Jeffrey Davis Received 12 December 2016; Editorial decision 22 March 2017 Abstract Stink bugs (Hemiptera: Heteroptera: Pentatomidae) are an emerging threat to soybean and corn production in the midwestern United States. An invasive species, the brown marmorated stink bug, Halyomorpha halys (Sta˚ l), is spreading through the region. However, little is known about the complex of stink bug species associ- ated with corn and soybean in the midwestern United States. In this region, particularly in the more northern states, stink bugs have historically caused only infrequent impacts to these crops. To prepare growers and agri- cultural professionals to contend with this new threat, we provide a review of stink bugs associated with soybean and corn in the midwestern United States.
    [Show full text]
  • De Novo Construction of a Transcriptome for the Stink Bug Crop
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.04.412270; this version posted December 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title 2 De novo construction of a transcriptome for the stink bug crop 3 pest Chinavia impicticornis during late development 4 5 Authors 6 Bruno C. Genevcius*, Tatiana T. Torres 7 8 Affiliation 9 Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, 10 Brazil 11 *correspondence: [email protected] 12 13 Abstract 14 Chinavia impicticornis is a Neotropical stink-bug (Hemiptera: Pentatomidae) with economic 15 importance for different crops. Little is known about the development of the species, as 16 well as the genetic mechanisms that may favor the establishment of populations in 17 cultivated plants. Here we conduct the first large-scale molecular study with C. 18 impicticornis. We generated RNA-seq data for males and females, at two immature 19 stages, for the genitalia separately and for the rest of the body. We assembled the 20 transcriptome and conduct a functional annotation. De novo assembled transcriptome 21 based on whole bodies and genitalia of males and females contained around 400,000 22 contigs with an average length of 688 bp. After pruning duplicated sequences and 23 conducting a functional annotation, the final annotated transcriptome comprised 39,478 24 transcripts of which 12,665 had GO terms assigned.
    [Show full text]
  • Boxelder Bug
    BOXELDER BUG Integrated Pest Management for Home Gardeners and Landscape Professionals The western boxelder bug (Boisea rubrolineata) is often a nuisance pest around and in homes. Boxelder bugs usually feed on the leaves, flowers, and seedpods of the female or seedbearing box elder tree (Acer negundo), although they may also subsist on male box elder trees and occasionally occur on maple and ash trees. They may feed on the fruits of almond, apple, cherry, peach, Figure 1. Boxelder bug adult and nymphs. Figure 2. Young nymph of western box- pear, and plum trees, and on grapes, (J. K. Clark) elder bug, Boisea rubrolineata. where their feeding punctures cause (J. K. Clark) the fruit to become deformed. Large numbers of the bug usually occur only on female box elder trees. IDENTIFICATION When full grown, the boxelder bug is about 1/2 inch long and one-third as wide. Adults are mostly black and have three red lines on the pronotum of the thorax (one down the middle and on each margin) and several fine Figure 3. Boxelder bug eggs on leaf. Figure 4. Adult squash bug. red lines on each wing (Figure 1). The (J. K. Clark) (J. K. Clark) wings lie flat on the bug’s back when it is at rest. The abdomen is red. The young nymphs are bright red (Figure 2) and when approaching adulthood, become marked with black and begin to develop black wing pads. Eggs are yellow when first laid but become red as nymphs develop inside (Figure 3). Boxelder bugs are true bugs (Order: Hemiptera) in the family Rhopalidae.
    [Show full text]
  • File Copy 161
    FILE COPY 161 Overwintering Aggregation of Boisea rubrolineatus (Heteroptera: Rhopalidae) in Western Oregon T. D. SCHOWALTER Department of Entomology, Oregon State University, Corvallis, Oregon 97331 Environ. Entomol. 15: 1055-1056 (1986) ABSTRACT Overwintering behavior of Boisea rubrolineatus (Barber) was studied during 1984-85. Large numbers of this insect aggregated on a single, large Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, tree, with deep bark fissures, at the edge of a stand ca. 1 km from a grove of maples, Acer macrophyllum Pursh, the feeding host. Other trees near the over- wintering site were smaller and lacked deep bark fissures, or were shaded by trees along the edge of the stand. Density measurement was used to estimate number of overwintering insects at ca. 8,000. These results demonstrate the degree of aggregative behavior in this insect and suggest that aspects of stand structure influence the availability of suitable over- wintering sites. KEY WORDS Boisea rubrolineatus, population dynamics, forest structure, resource uti- lization, overwintering site selection THE SURVIVAL OF overwintering adults of several pies, Acer macrophyllum Pursh, ca. 1 km N of the forest insect species may be critical to population overwintering site. These maples are the major trends and economic impacts (Furniss Carolin feeding host of this insect (Furniss Carolin 1977) 1977, Schowalter et al. 1986). Behavioral attributes and supported large populations of B. rubrolinea- of overwintering insects can influence the survival tus during spring and summer (personal observa- of such species (Tinker 1952, Pettinger Johnson tion). These trees were exposed to solar radiation 1962), but little information exists on overwinter- but lacked deep (>1 cm) bark crevices.
    [Show full text]