Optimum Use of Weather Radar

Total Page:16

File Type:pdf, Size:1020Kb

Optimum Use of Weather Radar OPERATIONS Optimum use of weather radar Optimum use of weather radar In recent years, there have been a number of flights where passengers or crew suffered injuries due to severe turbulence. In some other instances, the aircraft structure was substantially damaged following a hailstorm encounter. Clearly adverse weather can pose a threat to the safe and comfortable completion of a flight, thus it needs to be detected and avoided in a timely manner. DAVID CHRISTIAN LAURENT MARCONNET NORDEN VIDAL Flight Operations Director Flight Surveillance Systems Support & Training Operations & Manager Standards Safety Training Policy Enhancement Safety First #22 | July 2016 023 The airborne weather radar system is an essential tool for pilots to assess the intensity of convective weather ahead of the aircraft. In this respect, it enables the strategic and tactical planning of a safe flight trajectory. Weather radar technology has evolved significantly in the last few years and a range of enhanced products is now available. If properly used, they permit pilots workload to be significantly reduced while substantially reducing encounters with adverse weather. This article offers an overview of the existing weather radar technologies, and provides information and tips on how to tune the system and correctly interpret the available displays. WEATHER RADAR PRINCIPLE AND OPERATION The weather radar system installed the crew to carefully optimize its Prevention on-board aircraft provides the pilot with use. This relies primarily on a good the necessary information to avoid - not meteorological knowledge of weather through anticipation penetrate - adverse weather. phenomena, along with a good is essential. To obtain the maximum benefit from understanding of the available radar the weather radar system requires functions. Flying in adverse weather: lessons learned The aviation industry experience shows aircraft damage (fig.1). that although aircraft are equipped with These events have led us to wonder airborne weather radars, incursions why such encounters happen, and into very active convective cells still clearly show that prevention through occur, resulting in injuries or substantial anticipation is essential. (fig.1) Radome and windshield after hail encounter Weather When it comes to understanding is the active monitoring of the overall radar is of help, why aircraft fitted with technologically meteorological situation by the crew, but the crew overall advanced weather radars can end in addition to the optimum use of the up flying in such unfavorable weather weather radar and correct understanding assessment patterns, we have to consider that getting of the information displayed. We must of the weather the best out of technology onboard is not forget that weather radar is of help, just a part of the answer. A key element but the crew overall assessment of the situation plays of adverse weather avoidance strategies weather situation plays the central role. the central role. OPERATIONS Optimum use of weather radar HOW IS A CUMULONIMBUS, OFTEN CALLED “THUNDERSTORM”, STRUCTURED? Three common threats to aircraft are turbulence (which Understanding how a cumulonimbus cloud is structured is caused when two masses of air collide at different and evolves is key in dodging the associated weather speeds), hail and windshear. All three of these are disturbances. by-products of thunderstorms. High concentration of Ice Crystals FL 350 -40°C 23 000 ft -15°C 16 000 ft Freezing Level WIND SHEAR TURBULENCE WIND SHEAR TURBULENCE DUST Super-cooled liquid droplet Ice crystals Turbulence: Turbulence associated with a cumulonimbus is not it is necessary to apply recommendations for weather limited to inside the cloud. Therefore, when flying in avoidance as summarized in this article. an area where cumulonimbus clouds have developed, Hail: The presence of hail within a Risk of encountering hail relative to cumulonimbus cloud position cumulonimbus varies with altitude and wind: - Below FL 100, hail is equally likely to be encountered under the storm, in the cloud or around it (up to 2 NM). - Between FL 100 and FL 200, approximately 60 percent of hail is encountered in the cumulonimbus and 40 percent is encountered outside the cloud, under the anvil. - Above FL 200, hail is most likely to be encountered inside the cloud. When hail is encountered outside driven upward within the cloud by is less risk of hail in humid air than the cloud, usually the threat of strong drafts. It then freezes and is in dry air. In fact, moisture in the air hail is greater downwind of the transformed into hail before being behaves as a heat conductor, and cumulonimbus because moisture is blown downwind. Paradoxically, there helps to melt the hail. Safety First #22 | July 2016 025 Weather radar principle A knowledge of the radar principle tune this system and interpret the On the Airbus is paramount in order to accurately weather radar display correctly. fleet, all weather Reflectivity radars have full capability to allow Weather detection is based on the The weather radar echo returns vary reflectivity of water droplets(fig.2) . The in intensity as a function of the drop- wet turbulence weather echo appears on the Naviga- let size, composition and quantity. For detection. tion Display (ND) with a color scale that example, a water particle is five times goes from red (high reflectivity) to green more reflective than an ice particle of (low reflectivity). the same size. High Reectivity (fig.2) Wet Hail Weather radar principle Good Reectivity Liquid Rain water Wet Snow Dry Hail Dry Snow Low Reectivity Fog Drizzle Low Reectivity Some weather radars are fitted of light rainfall, depicted in green in with a turbulence display mode. normal mode, is shown in magenta This function (the TURB function) is when there is high turbulence activity. based on the Doppler effect and is The TURB function is on most weather sensitive to precipitation movement. radars only active within a range of 40 Like the weather radar, the TURB NM (Doppler measurement capability) function needs a minimum amount of and should only be used in wet precipitation to be effective. An area turbulence. DID YOU Weather radar operation KNOW Each type of weather radar has its own The flight crew uses four features to has an essential influence on the particularities. To get all the information on operate the radar: optimum tilt setting. the characteristics, limitations and opera- - Antenna tilt: this is the angle between - Gain control: this adjusts the tional recommendations of each weather the centre of the beam and the sensitivity of the receiver. radar model, the user guide of the radar horizon (fig.3). - Radar modes: weather (WX) or manufacturer needs to be studied. - Range control of the ND: this weather + turbulence (WX + T). (fig.3) Definition of the TILT OPERATIONS Optimum use of weather radar Weather radar limitations Weather radar detection capability Reflectivity One of the weather radar limitations is winds produce large scale uplifts of that it indicates only the presence of dry air. The resulting weather cells have is not directly liquid water. The consequence is that much less reflectivity than mid-latitude proportional to a thunderstorm does not have the convective cells. However, turbulence same reflectivity over its altitude range in or above such clouds may have a the level of risk because the quantity of liquid water in higher intensity than indicated by the that may be the atmosphere decreases with the image on the weather radar display. encountered. altitude (fig.4). Yet, the convective On the other hand, air close to the cloud and associated threats may sea can be very humid. In this case, extend significantly above the upper thermal convection will produce clouds detection limit of the weather radar that are full of water: these clouds will (called ‘radar top’). This means that have a high reflectivity, but may not reflectivity is not directly proportional to necessarily be a high threat. the level of risk that may be encountered: a convective cloud may be dangerous, Consequently, limitations of weather even if the radar echo is weak. radars must be well understood and complemented by basic meteorological This is particularly true for equatorial knowledge of the crew and, where overland regions where converging possible, visual observation. Turbulence Area Turbulent area, not detected Reectivity by the weather radar Visible Top Radar Top 0°C (fig.4) Reflective image of a cumulonimbus The weather radar detects: The weather radar does not detect: - Rainfall - Ice crystals, dry hail * and snow - Wet hail and wet turbulence - Clear air turbulence - Windshear - Sandstorms (solid particles are almost transparent to the radar beam) - Lightning * * The latest generations of weather radars offer hail and lightning prediction functions (see the following sections). Safety First #22 | July 2016 027 The beam attenuation phenomenon Another limitation of the weather radar and intensity of that weather may not be A black hole is called ‘shadowing’ or ‘attenuation’. accurately displayed to the pilot. What The weather radar display depends appears to be a thin or inexistent band behind a red area on signal returns: the more intense the of precipitation (fig.5) could in fact be on a weather radar precipitation, the less distance the radar the leading edge of a much larger area can see through. Therefore when the of precipitation. Secondly, any weather display should always radar echo is unable to make the two behind such
Recommended publications
  • A Real-Time System to Estimate Weather Conditions at High Resolution
    12.1 A Real-Time System to Estimate Weather Conditions at High Resolution Peter P. Neilley1 Weather Services International, Inc. Andover, MA 01810 And Bruce L. Rose The Weather Channel Atlanta, GA the earth’s surface (the so-called current 1. Introduction1 conditions). b) We do not necessarily produce weather The purpose of this paper is to describe an observations on a regular grid, but at an operational system used to estimate current irregular set of arbitrary locations or points weather conditions at arbitrary places in real- that are relevant to the consumers of the time. The system, known as High Resolution information. Assimilation of Data (or HiRAD), is designed to generate synthetic weather observations in a c) In addition to producing quantitative manner equivalent in scope, timeliness and observational elements (e.g. temperature, quality to a arbitrarily dense physical observing pressure and wind speed) our system network. Our approach is, first, to collect produces common, descriptive terminology information from a variety of relevant sources of the sensible weather such as including gridded analyses, traditional surface “Thundershowers”, “Patchy Fog”, and weather reports, radar, satellite and lightning “Snow Flurries”. observations. Then we continuously synthesize these data into weather condition estimates at d) We do not strive to produce a state of the prescribed locations. An operational system atmosphere optimized for fidelity with based on this approach has been built and is Numerical Weather Prediction (NWP) commercially deployed in the United States. models. Instead, the system is optimized to produce the most accurate estimate of the In most regards, our approach is analogous to observed state at the surface that can be modern data assimilation techniques.
    [Show full text]
  • Central Region Technical Attachment 92-11 Using New Technology To
    /Ou)%-c<v^A cU-i CRH SSD MAY 1992 CENTRAL REGION TECHNICAL ATTACHMENT 92-11 USING NEW TECHNOLOGY TO LOCATE AND FORECAST THE MOVEMENT OF A FRONT IN THE MESOSCALE MICHAEL K. HOLZINGER NATIONAL WEATHER SERVICE FORECAST OFFICE DENVER, COLORADO 1. INTRODUCTION The National Weather Service (NWS) is testing much of the future technology in an operational environment at the Weather Service Forecast Office (WSFO) in Denver, Colorado. The Denver AWIPS Risk Reduction and Requirements Evaluation (DARRRE II) workstat­ ion at the WSFO gives forecasters the ability to analyze mesosc- ale features in much more detail and make local forecasts with more precision than was possible a few years ago. WSFO Denver conducted an experimental project, called the En­ hanced Terminal Forecast (EFT) program, between January and November, 1991 (NWS 1990; NWS 1991). In place of standard avia­ tion terminal forecasts, EFT forecasts were issued for the three terminals in the Denver metropolitan area. These are Stapleton International Airport (DEN), Centennial Airport (APA), and Jefferson County Airport (BJC) (Fig. 1A). Compared to conven­ tional terminal forecasts, the EFT had a slightly different format, slightly different amendment criteria, disallowed the use of terms "chance" and "slight chance" during the first three hours, and attempted to nail down weather changes to the nearest 15 minutes during the first three hours. Perhaps, the best opportunity to attempt forecasts to the nearest 15 minutes along the Front Range is provided by warm season wind shifts, either gust fronts or frontal. Warm season wind shifts can often be spotted on Doppler radar an hour or more before they reach DEN.
    [Show full text]
  • Fire W Eather
    Fire Weather Fire Weather Fire weather depends on a combination of wildland fuels and surface weather conditions. Dead and live fuels are assessed weekly from a satellite that determines the greenness of the landscape. Surface weather conditions are monitored every 5-minutes from the Oklahoma Mesonet. This fire weather help page highlights the surface weather ingredients to monitor before wildfires and also includes several products to monitor once wildfires are underway. Fire Weather Ingredients: WRAP While the presence of wildland fuels is one necessary component for wildfires, weather conditions ultimately dictate whether or not a day is primed for wildfires to occur. There are four key fire weather ingredients and they include: high Winds, low Relative humidity, high Air temperature, and no/minimal recent Precipitation (WRAP). High Winds are the second most critical weather ingredient for wildfires. In general, winds of 20 mph or greater 20+ mph winds increase spot fires and make for most of the containment considerably more difficult. state Low Relative humidity is the most 30-40+ critical weather ingredient for wildfires mph winds and is most common in the afternoon when the air temperature is at its warmest. When relative humidity is at or below 20% extreme fire behavior can result and spot fires become freQuent. Watch out for areas of 20% or below relative humidity and 20 mph or higher winds à 20/20 rule! Extremely low relative humidity Warm Air temperatures are another values key weather ingredient for wildfires as warming can lower the relative humidity, reduce moisture for smaller dead fuels, and bring fuels closer to their ignition point.
    [Show full text]
  • Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
    Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving.
    [Show full text]
  • The Effect of Ownship Information and Nexrad Resolution on Pilot Decision Making in the Use of a Cockpit Weather Information Display
    NASA/CR-2001-210845 The Effect of Ownship Information and NexRad Resolution on Pilot Decision Making in the Use of a Cockpit Weather Information Display Paul F. Novacek, Malcolm A. Burgess, Michael L. Heck, and Alan F. Stokes RTI International, Hampton, Virginia December 2001 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space science. The NASA Scientific and Technical papers from scientific and technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co sponsored by part in helping NASA maintain this important NASA. role. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA's scientific and technical information. The NASA programs, projects, and missions, often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional TECHNICAL TRANSLATION. English language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to NASA's research and development activities. These mission. results are published by NASA in the NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office's diverse offerings include TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing research phase of research that present the results of results ..
    [Show full text]
  • Delta Pilots' Scheduling Reference Handbook
    Delta Pilots’ Scheduling Reference Handbook Prepared by the Delta MEC Scheduling Committee Revision 8 | October 2020 UPDATES Updated October 2020: • New contact information for the MEC Scheduling Committee • Reorganized entire document into sequential subject matter chapters • Added Table of Contents to each chapter • Added examples of common scenarios to When Have You Been Contacted? • Clarified references to eight-hour uninterrupted sleep opportunity • Deleted references to Special Incentive Lines (SIL) • Clarified references to ACARS notification of reroutes • Added references to ARCOS • Added references to ACARS notification of FDP extension • Updated information on fatigue calls and the Fitness Review Board • Incorporated information from recent Flight Time Duty Time Updates and Scheduling Alerts • Moved iCrew User Guide from Appendix to separate file in AeroDocs Contents Introduction 1 Can They Do That to Me? 2 When Have You Been Contacted? 4 You Have to Tell Someone 7 Timeline of Scheduling Events 9 Monthly Bidding Process 11 Regular Line Adjustment Process 18 Pilot Change Schedule (PCS), Slip Requests and Pay 19 Reserve 45 Reroute and Recovery Obligations 65 Flight and Duty Time Limits and Rest Requirements 73 Fatigue and the Fitness Review Board 103 Vacation 105 Training 115 Sick Leave 118 Staffing, Vacancies, and Surpluses 124 Odds and Ends 139 Airport Longitude Table 153 Appendix I: FAR 117 & IROPS Information 160 Appendix II: FAR 117 Quick Reference Guide (QRG) 169 Appendix III: FAR Part 117 – An In-Depth Discussion 177 Introduction The Scheduling Reference Handbook has been developed by the MEC Scheduling Committee to provide the line pilot with a quick and easy reference to various scheduling, FAR, and Pilot Working Agreement (PWA) rules and processes.
    [Show full text]
  • Weather Observations
    Operational Weather Analysis … www.wxonline.info Chapter 2 Weather Observations Weather observations are the basic ingredients of weather analysis. These observations define the current state of the atmosphere, serve as the basis for isoline patterns, and provide a means for determining the physical processes that occur in the atmosphere. A working knowledge of the observation process is an important part of weather analysis. Source-Based Observation Classification Weather parameters are determined directly by human observation, by instruments, or by a combination of both. Human-based Parameters : Traditionally the human eye has been the source of various weather parameters. For example, the amount of cloud that covers the sky, the type of precipitation, or horizontal visibility, has been based on human observation. Instrument-based Parameters : Numerous instruments have been developed over the years to sense a variety of weather parameters. Some of these instruments directly observe a particular weather parameter at the location of the instrument. The measurement of air temperature by a thermometer is an excellent example of a direct measurement. Other instruments observe data remotely. These instruments either passively sense radiation coming from a location or actively send radiation into an area and interpret the radiation returned to the instrument. Satellite data for visible and infrared imagery are examples of the former while weather radar is an example of the latter. Hybrid Parameters : Hybrid observations refer to weather parameters that are read by a human observer from an instrument. This approach to collecting weather data has been a big part of the weather observing process for many years. Proper sensing of atmospheric data requires proper siting of the sensors.
    [Show full text]
  • ACARS Aeronautical Radio, Inc
    Introducing ACARS Aeronautical Radio, Inc. (commonly known as: "ARINC") maintains a huge VHF and HF voice network throughout the United States and overseas to provide operational radio communications for the aircraft industry. In the early eighties they developed an addressable, digital data link for commercial and business jets and their respective companies known as ACARS. ACARS stands for Aircraft Communications Addressing and Reporting System. It was produced to reduce the flight crew's work-load by using modern computer technology to exchange many routine reports and messages. This improves the safety and efficiency of modern air travel. ACARS uses the AM mode because the same airborne VHF radio is often also used for voice communications. Burst transmissions are used with a limit of 220 ■ ACARS FREQUENCIES characters per message. Transmissions often last less than one second! MHz Function Therefore when monitoring ACARS it is important to leave your receiver's 131.550 Primary USA/Canada squelch off. To monitor ACARS transmissions you will need a VHF scanner or 130.025 Secondary USA receiver capable of tuning the VHF (AM) aircraft band 118 to 136 MHz. 129.125 Tertiary USA 131.725 Primary Europe ACARS messages are very structured. Each position in the message has a 131.450 Primary Japan specific function. The very common Q0 Link Test is shown as an example below. 131.475 Private Air Canada Address Field Message Label Downlink Block Identifier ■ ACARS DECODERS .N9009U Q01 5400UA1750 Message Sequence Number Carrier & Flight Number There are nearly one hundred "standard" ACARS message formats plus a virtually unlimited number of airline specific company formatted message types.
    [Show full text]
  • Range Line Surveys
    United States Power Squadrons Nautical Program Standard Operating Procedures This document describes the nautical cooperative charting programs. Included with each program description is a discussion on the program’s purpose and its reporting frequency. Suggested preparations and materials for conducting the program are presented so you will be well prepared for the survey. The requirements for conducting a survey are described in detail. After the survey is completed you will want to complete the appropriate form and worksheets that make submitting a report a rewarding experience. All reports that show an error to a chart shall be submitted to the controlling agency. Coast Pilot updates and depth surveys are to be submitted to NOAA through their Discrepancy Reporting system. Problems with Aids to Navigation should be reported to the Coast Guard. All reports should be submitted to the Cooperative Charting Committee using the submittal form on the Cooperative Charting website. The data for the report is to be provided on the appropriate form which will be uploaded along with any pictures, chartlets or other associated documents. A member of the Cooperative Charting Committee will review the submitted reports and assign the appropriate number of credits if approved. If errors are found or the information is incomplete the submitter will be advised via email of what actions are needed to gain acceptance. The programs and the total credits for each report are described in below: Reports to NOS Discrepancy Report/Nautical Item 50 Coast Pilot
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • PIREPS the NWS Uses Pilot Reports (PIREPS) in Our Forecast Process Everyday
    Why Should Weather Concern You? Local IFR Ceiling and Visibility Climatology Weather has a tremendous impact on flights, particu- The following charts provide a brief overview of when IFR larly during the takeoff and landing phases. A specific conditions occur at the three airports our office provides example: aircraft are sensitive to variations in wind TAF service for. Based on hourly observations from 1973- direction and speed during these phases, as is air traffic 2003, we calculated the percentage of time that IFR ceil- control which may have to adjust approach/departure ings or visibilities occurred within 10 days of the first of flight paths based on the winds. Hazardous weather has each month. This was done for two times per day, 09 and been attributed as a cause to 3 out of every 10 fatal air- 21 UTC, representative of the early morning and the late craft accidents, including thunderstorms, icing, and IFR afternoon. Two things are clear: 1) IFR conditions are more conditions. In fact, one study found that 63% of weather likely in the winter months, December through February. related fatal accidents were caused by low ceilings and 2) There is a secondary peak in low visibilities during the visibilities. early morning centered on September 1st. How We Use Your PIREPS The NWS uses pilot reports (PIREPS) in our forecast process everyday. Also, a variety of commercial jets transmit continuous temperature, moisture, and wind data during their ascent and descent phases via ACARS (Aircraft Communications Addressing and Reporting System). Your pilot report of weather conditions aloft help us locate areas of enhanced low level wind shear which we incorporate into our TAFs, or where tempera- tures aloft may deviate from what we expected which can impact precipitation type during the winter time, among many other things.
    [Show full text]
  • NASA Turbulence Technologies In-Service Evaluation: Delta Air Lines Report-Out
    NASA/CR-2007-214616 NASA Turbulence Technologies In-Service Evaluation: Delta Air Lines Report-Out Christian Amaral, Captain Steve Dickson, and Bill Watts Delta Air Lines, Inc. Atlanta, Georgia Under NASA Contract NND06AE46P April 2007 NASA STI Program ... in Profile Since its founding, NASA has been • CONFERENCE PUBLICATION. Collected dedicated to the advancement of aeronautics and papers from scientific and technical space science. The NASA scientific and technical conferences, symposia, seminars, or other information (STI) program plays a key part in meetings sponsored or cosponsored by helping NASA maintain this important role. NASA. The NASA STI program is operated under • SPECIAL PUBLICATION. Scientific, the auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA programs, projects, and missions, NASA STI program provides access to the NASA often concerned with subjects having Aeronautics and Space Database and its public substantial public interest. interface, the NASA Technical Report Server, thus providing one of the largest collections of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific Results are published in both non-NASA channels and technical material pertinent to and by NASA in the NASA STI Report Series, NASA’s mission. which includes the following report types: Specialized services also include creating • TECHNICAL PUBLICATION. Reports custom thesauri, building customized databases, of completed research or a major significant and organizing and publishing research results. phase of research that present the results of NASA programs and include extensive data For more information about the NASA or theoretical analysis.
    [Show full text]