Weather in the Cockpit: Priorities, Sources, Delivery, and Needs in the Next Generation Air Transportation System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Real-Time System to Estimate Weather Conditions at High Resolution
12.1 A Real-Time System to Estimate Weather Conditions at High Resolution Peter P. Neilley1 Weather Services International, Inc. Andover, MA 01810 And Bruce L. Rose The Weather Channel Atlanta, GA the earth’s surface (the so-called current 1. Introduction1 conditions). b) We do not necessarily produce weather The purpose of this paper is to describe an observations on a regular grid, but at an operational system used to estimate current irregular set of arbitrary locations or points weather conditions at arbitrary places in real- that are relevant to the consumers of the time. The system, known as High Resolution information. Assimilation of Data (or HiRAD), is designed to generate synthetic weather observations in a c) In addition to producing quantitative manner equivalent in scope, timeliness and observational elements (e.g. temperature, quality to a arbitrarily dense physical observing pressure and wind speed) our system network. Our approach is, first, to collect produces common, descriptive terminology information from a variety of relevant sources of the sensible weather such as including gridded analyses, traditional surface “Thundershowers”, “Patchy Fog”, and weather reports, radar, satellite and lightning “Snow Flurries”. observations. Then we continuously synthesize these data into weather condition estimates at d) We do not strive to produce a state of the prescribed locations. An operational system atmosphere optimized for fidelity with based on this approach has been built and is Numerical Weather Prediction (NWP) commercially deployed in the United States. models. Instead, the system is optimized to produce the most accurate estimate of the In most regards, our approach is analogous to observed state at the surface that can be modern data assimilation techniques. -
Central Region Technical Attachment 92-11 Using New Technology To
/Ou)%-c<v^A cU-i CRH SSD MAY 1992 CENTRAL REGION TECHNICAL ATTACHMENT 92-11 USING NEW TECHNOLOGY TO LOCATE AND FORECAST THE MOVEMENT OF A FRONT IN THE MESOSCALE MICHAEL K. HOLZINGER NATIONAL WEATHER SERVICE FORECAST OFFICE DENVER, COLORADO 1. INTRODUCTION The National Weather Service (NWS) is testing much of the future technology in an operational environment at the Weather Service Forecast Office (WSFO) in Denver, Colorado. The Denver AWIPS Risk Reduction and Requirements Evaluation (DARRRE II) workstat ion at the WSFO gives forecasters the ability to analyze mesosc- ale features in much more detail and make local forecasts with more precision than was possible a few years ago. WSFO Denver conducted an experimental project, called the En hanced Terminal Forecast (EFT) program, between January and November, 1991 (NWS 1990; NWS 1991). In place of standard avia tion terminal forecasts, EFT forecasts were issued for the three terminals in the Denver metropolitan area. These are Stapleton International Airport (DEN), Centennial Airport (APA), and Jefferson County Airport (BJC) (Fig. 1A). Compared to conven tional terminal forecasts, the EFT had a slightly different format, slightly different amendment criteria, disallowed the use of terms "chance" and "slight chance" during the first three hours, and attempted to nail down weather changes to the nearest 15 minutes during the first three hours. Perhaps, the best opportunity to attempt forecasts to the nearest 15 minutes along the Front Range is provided by warm season wind shifts, either gust fronts or frontal. Warm season wind shifts can often be spotted on Doppler radar an hour or more before they reach DEN. -
AMOFSG/10-Sod 19/6/13
AMOFSG/10-SoD 19/6/13 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) TENTH MEETING Montréal, 17 to 19 June 2013 SUMMARY OF DISCUSSIONS 1. HISTORICAL 1.1 The tenth meeting of the Aerodrome Meteorological Observation and Forecast Study Group (AMOFSG) was held at the Headquarters of the International Civil Aviation Organization (ICAO) in Montréal, Canada, 17 to 19 June 2013. 1.2 The meeting was opened by Mr. Greg Brock, Chief of the Meteorology Section of the Air Navigation Bureau of ICAO, who extended a warm welcome to all the participants. Mr. Brock emphasized that this tenth meeting of the AMOFSG was likely to be the last of the group prior to the convening of an ICAO Meteorology (MET) Divisional Meeting in July 2014, to be held in part conjointly with the Fifteenth Session of the World Meteorological Organization (WMO) Commission for Aeronautical Meteorology (CAeM-XV). For this reason, Mr. Brock underlined the need for the group to work efficiently during its three days of deliberations, with a strong emphasis placed on determining whether proposals arising from each of the topics to be addressed were of sufficient maturity so as to reduce or eliminate entirely the need for significant further work and/or a meeting ahead of the MET Divisional Meeting. 1.3 The names and contact details of the participants are listed in Appendix A . Mr. Bill Maynard was elected Chairman of the meeting. The meeting was served by the Acting Secretary of the AMOFSG, Mr. Greg Brock, Chief, Meteorology Section. 1.4 The meeting considered the following agenda items: Agenda Item 1: Opening of the meeting; Agenda Item 2: Election of Chairman; Agenda Item 3: Adoption of working arrangements; Agenda Item 4: Adoption of the agenda; (41 pages) AMOFSG.10.SoD.en.docx AMOFSG/10-SoD - 2 - Agenda Item 5: Aerodrome observations; Agenda Item 6: Forecasting at the aerodrome and in the terminal area and ATIS requirements; Agenda Item 7: Deliverables; Agenda Item 8: Any other business; and Agenda Item 9: Closure of the meeting. -
Fire W Eather
Fire Weather Fire Weather Fire weather depends on a combination of wildland fuels and surface weather conditions. Dead and live fuels are assessed weekly from a satellite that determines the greenness of the landscape. Surface weather conditions are monitored every 5-minutes from the Oklahoma Mesonet. This fire weather help page highlights the surface weather ingredients to monitor before wildfires and also includes several products to monitor once wildfires are underway. Fire Weather Ingredients: WRAP While the presence of wildland fuels is one necessary component for wildfires, weather conditions ultimately dictate whether or not a day is primed for wildfires to occur. There are four key fire weather ingredients and they include: high Winds, low Relative humidity, high Air temperature, and no/minimal recent Precipitation (WRAP). High Winds are the second most critical weather ingredient for wildfires. In general, winds of 20 mph or greater 20+ mph winds increase spot fires and make for most of the containment considerably more difficult. state Low Relative humidity is the most 30-40+ critical weather ingredient for wildfires mph winds and is most common in the afternoon when the air temperature is at its warmest. When relative humidity is at or below 20% extreme fire behavior can result and spot fires become freQuent. Watch out for areas of 20% or below relative humidity and 20 mph or higher winds à 20/20 rule! Extremely low relative humidity Warm Air temperatures are another values key weather ingredient for wildfires as warming can lower the relative humidity, reduce moisture for smaller dead fuels, and bring fuels closer to their ignition point. -
Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving. -
The Effect of Ownship Information and Nexrad Resolution on Pilot Decision Making in the Use of a Cockpit Weather Information Display
NASA/CR-2001-210845 The Effect of Ownship Information and NexRad Resolution on Pilot Decision Making in the Use of a Cockpit Weather Information Display Paul F. Novacek, Malcolm A. Burgess, Michael L. Heck, and Alan F. Stokes RTI International, Hampton, Virginia December 2001 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space science. The NASA Scientific and Technical papers from scientific and technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co sponsored by part in helping NASA maintain this important NASA. role. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA's scientific and technical information. The NASA programs, projects, and missions, often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional TECHNICAL TRANSLATION. English language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to NASA's research and development activities. These mission. results are published by NASA in the NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office's diverse offerings include TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing research phase of research that present the results of results .. -
Delta Pilots' Scheduling Reference Handbook
Delta Pilots’ Scheduling Reference Handbook Prepared by the Delta MEC Scheduling Committee Revision 8 | October 2020 UPDATES Updated October 2020: • New contact information for the MEC Scheduling Committee • Reorganized entire document into sequential subject matter chapters • Added Table of Contents to each chapter • Added examples of common scenarios to When Have You Been Contacted? • Clarified references to eight-hour uninterrupted sleep opportunity • Deleted references to Special Incentive Lines (SIL) • Clarified references to ACARS notification of reroutes • Added references to ARCOS • Added references to ACARS notification of FDP extension • Updated information on fatigue calls and the Fitness Review Board • Incorporated information from recent Flight Time Duty Time Updates and Scheduling Alerts • Moved iCrew User Guide from Appendix to separate file in AeroDocs Contents Introduction 1 Can They Do That to Me? 2 When Have You Been Contacted? 4 You Have to Tell Someone 7 Timeline of Scheduling Events 9 Monthly Bidding Process 11 Regular Line Adjustment Process 18 Pilot Change Schedule (PCS), Slip Requests and Pay 19 Reserve 45 Reroute and Recovery Obligations 65 Flight and Duty Time Limits and Rest Requirements 73 Fatigue and the Fitness Review Board 103 Vacation 105 Training 115 Sick Leave 118 Staffing, Vacancies, and Surpluses 124 Odds and Ends 139 Airport Longitude Table 153 Appendix I: FAR 117 & IROPS Information 160 Appendix II: FAR 117 Quick Reference Guide (QRG) 169 Appendix III: FAR Part 117 – An In-Depth Discussion 177 Introduction The Scheduling Reference Handbook has been developed by the MEC Scheduling Committee to provide the line pilot with a quick and easy reference to various scheduling, FAR, and Pilot Working Agreement (PWA) rules and processes. -
Weather Observations
Operational Weather Analysis … www.wxonline.info Chapter 2 Weather Observations Weather observations are the basic ingredients of weather analysis. These observations define the current state of the atmosphere, serve as the basis for isoline patterns, and provide a means for determining the physical processes that occur in the atmosphere. A working knowledge of the observation process is an important part of weather analysis. Source-Based Observation Classification Weather parameters are determined directly by human observation, by instruments, or by a combination of both. Human-based Parameters : Traditionally the human eye has been the source of various weather parameters. For example, the amount of cloud that covers the sky, the type of precipitation, or horizontal visibility, has been based on human observation. Instrument-based Parameters : Numerous instruments have been developed over the years to sense a variety of weather parameters. Some of these instruments directly observe a particular weather parameter at the location of the instrument. The measurement of air temperature by a thermometer is an excellent example of a direct measurement. Other instruments observe data remotely. These instruments either passively sense radiation coming from a location or actively send radiation into an area and interpret the radiation returned to the instrument. Satellite data for visible and infrared imagery are examples of the former while weather radar is an example of the latter. Hybrid Parameters : Hybrid observations refer to weather parameters that are read by a human observer from an instrument. This approach to collecting weather data has been a big part of the weather observing process for many years. Proper sensing of atmospheric data requires proper siting of the sensors. -
ACARS Aeronautical Radio, Inc
Introducing ACARS Aeronautical Radio, Inc. (commonly known as: "ARINC") maintains a huge VHF and HF voice network throughout the United States and overseas to provide operational radio communications for the aircraft industry. In the early eighties they developed an addressable, digital data link for commercial and business jets and their respective companies known as ACARS. ACARS stands for Aircraft Communications Addressing and Reporting System. It was produced to reduce the flight crew's work-load by using modern computer technology to exchange many routine reports and messages. This improves the safety and efficiency of modern air travel. ACARS uses the AM mode because the same airborne VHF radio is often also used for voice communications. Burst transmissions are used with a limit of 220 ■ ACARS FREQUENCIES characters per message. Transmissions often last less than one second! MHz Function Therefore when monitoring ACARS it is important to leave your receiver's 131.550 Primary USA/Canada squelch off. To monitor ACARS transmissions you will need a VHF scanner or 130.025 Secondary USA receiver capable of tuning the VHF (AM) aircraft band 118 to 136 MHz. 129.125 Tertiary USA 131.725 Primary Europe ACARS messages are very structured. Each position in the message has a 131.450 Primary Japan specific function. The very common Q0 Link Test is shown as an example below. 131.475 Private Air Canada Address Field Message Label Downlink Block Identifier ■ ACARS DECODERS .N9009U Q01 5400UA1750 Message Sequence Number Carrier & Flight Number There are nearly one hundred "standard" ACARS message formats plus a virtually unlimited number of airline specific company formatted message types. -
Aerodrome Actual Weather – METAR Decode
Aerodrome Actual Weather – METAR decode Code element Example Decode Notes 1 Identification METAR — Meteorological Airfield Report, SPECI — selected special (not from UK civil METAR or SPECI METAR METAR aerodromes) Location indicator EGLL London Heathrow Station four-letter indicator 'ten twenty Zulu on the Date/Time 291020Z 29th' AUTO Metars will only be disseminated when an aerodrome is closed or at H24 aerodromes, A fully automated where the accredited met. observer is on duty break overnight. Users are reminded that reports AUTO report with no human of visibility, present weather and cloud from automated systems should be treated with caution intervention due to the limitations of the sensors themselves and the spatial area sampled by the sensors. 2 Wind 'three one zero Wind degrees, fifteen knots, Max only given if >= 10KT greater than the mean. VRB = variable. 00000KT = calm. 31015G27KT direction/speed max twenty seven Wind direction is given in degrees true. knots' 'varying between two Extreme direction 280V350 eight zero and three Variation given in clockwise direction, but only when mean speed is greater than 3 KT. variance five zero degrees' 3 Visibility 'three thousand two Prevailing visibility 3200 0000 = 'less than 50 metres' 9999 = 'ten kilometres or more'. No direction is required. hundred metres' Minimum visibility 'Twelve hundred The minimum visibility is also included alongside the prevailing visibility when the visibility in one (in addition to the 1200SW metres to the south- direction, which is not the prevailing visibility, is less than 1500 metres or less than 50% of the prevailing visibility west' prevailing visibility. A direction is also added as one of the eight points of the compass. -
Range Line Surveys
United States Power Squadrons Nautical Program Standard Operating Procedures This document describes the nautical cooperative charting programs. Included with each program description is a discussion on the program’s purpose and its reporting frequency. Suggested preparations and materials for conducting the program are presented so you will be well prepared for the survey. The requirements for conducting a survey are described in detail. After the survey is completed you will want to complete the appropriate form and worksheets that make submitting a report a rewarding experience. All reports that show an error to a chart shall be submitted to the controlling agency. Coast Pilot updates and depth surveys are to be submitted to NOAA through their Discrepancy Reporting system. Problems with Aids to Navigation should be reported to the Coast Guard. All reports should be submitted to the Cooperative Charting Committee using the submittal form on the Cooperative Charting website. The data for the report is to be provided on the appropriate form which will be uploaded along with any pictures, chartlets or other associated documents. A member of the Cooperative Charting Committee will review the submitted reports and assign the appropriate number of credits if approved. If errors are found or the information is incomplete the submitter will be advised via email of what actions are needed to gain acceptance. The programs and the total credits for each report are described in below: Reports to NOS Discrepancy Report/Nautical Item 50 Coast Pilot -
METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element.