Evaluating the Potential for Species Reintroductions in Canada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Iberian Lynx Lynx Pardinus Conservation Breeding Program A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC The Iberian lynx Lynx pardinus Conservation Breeding Program A. VARGAS1, I. SA´ NCHEZ2, F. MARTI´NEZ1, A. RIVAS1, J. A. GODOY3, E. ROLDA´ N4, M. A. SIMO´ N5, R. SERRA6, MaJ. PE´ REZ7, C. ENSEN˜ AT8, M. DELIBES3, M. AYMERICH9, 10 11 A. SLIWA & U. BREITENMOSER 1Centro de Cr´ıa de Lince Ibe´rico El Acebuche, Parque Nacional de Don˜ ana, Huelva, Spain, 2Zoobota´ nico de Jerez, Ca´ diz, Spain, 3Don˜ ana Biological Station, CSIC, Sevilla, Spain, 4National Museum of Natural Science, CSIC, Madrid, Spain, 5Environmental Council, Andalusian Government, Jae´ n, Spain, 6Investigac¸a˜ o Veterina´ ria Independente, Lisbon, Portugal, 7Centro de Cr´ıa en Cautividad de Lince Ibe´rico La Olivilla, Jaen, Spain, 8Parc Zoolo´ gic, Barcelona, Spain, 9Direccio´ n General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid, Spain, 10Cologne Zoo, Cologne 50735, Germany, and 11IUCN Cat Specialist Group, Institute of Veterinary Virology, University of Bern, Bern, Switzerland E-mail: [email protected] The Iberian Lynx Conservation Breeding Program fol- INTRODUCTION lows a multidisciplinary approach, integrated within the National Strategy for the Conservation of the Iberian lynx, which is carried out in cooperation with national, Iberian lynx Lynx pardinus wild populations regional and international institutions. The main goals of have undergone a constant regression through- the ex situ conservation programme are to: (1) maintain a out the last century. The decline has been genetically and demographically managed captive popu- especially abrupt in the last 20 years, with more lation; (2) create new Iberian lynx Lynx pardinus free- ranging populations through re-introduction. -
Steps in Becoming Your Own Plant Breeder Mark P
NCRPIS Conference Papers, Posters and North Central Regional Plant Introduction Station Presentations 1988 Steps in becoming your own plant breeder Mark P. Widrlechner United States Department of Agriculture, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ncrpis_conf Part of the Agricultural Science Commons, Plant Biology Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ncrpis_conf/16. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Conference Proceeding is brought to you for free and open access by the North Central Regional Plant Introduction Station at Iowa State University Digital Repository. It has been accepted for inclusion in NCRPIS Conference Papers, Posters and Presentations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 46 STEPS IN BECOMING YOUR OWN PLANT BREEDER Mark P. Widrlechner USDA·ARS, Nort:h Central Regional Plant Introduction Station Iowa State University, Ames, IA 50011 As herb growers and marketers, all ~f us enjoy working with plants and 'their useful products. Many of us are involved wit:h growing herbs from seed or cuttings. There probably aren't quite so many of us who produce our own seed and of those who do produce seed there are even fewer who do so using soma method of controlled pollination. ·To be a plant breeder, first you need to learn how to produce quality seed under controlled pollination conditions for the species you want to improve. -
Appendix E.14 Spotlight Surveys Report California Flats Solar Project Spotlight Surveys for San Joaquin Kit Fox and American Badger
Appendix E.14 Spotlight Surveys Report California Flats Solar Project Spotlight Surveys for San Joaquin Kit Fox and American Badger Project # 3308 Prepared for: California Flats Solar, LLC 135 Main Street, 6th Floor San Francisco, CA 94105 Prepared by: H. T. Harvey & Associates April 2014 Cal Poly Technology Park, Bldg. 83, Ste. 1B San Luis Obispo, CA 93407 Ph: 805.756.7400 F: 805.756.7441 Executive Summary The California Flats Solar Project (Project) is a 280-megawatt photovoltaic solar power plant proposed for development in southeastern Monterey County, California. When approved, the solar facility and related operations infrastructure will be built on approximately 1037 hectares (2562 acres) (Project site) of the 29,137-hectare (72,000-acre) Jack Ranch, which is a working cattle ranch. The overall development will include improvements to an existing access road and its connection to State Route 41 (access road/Hwy 41 improvement areas). Together, the Project site and access road/Hwy 41 improvement areas constitute the 1058-hectare (2615-acre) Project impact area (PIA), where all direct, Project-related impacts will occur. A biological study area (BSA) was delineated around the PIA, within which most Project-related biological surveys and assessments are being conducted. The Project site is located within a landscape dominated by gently rolling terrain and grasslands, interspersed with several, mostly ephemeral, riparian corridors and drainages. Numerous wildlife species are known to occur in the region, some of which have been identified as candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) and/or U.S. -
Educator's Guide
Educator’s Guide the jill and lewis bernard family Hall of north american mammals inside: • Suggestions to Help You come prepared • essential questions for Student Inquiry • Strategies for teaching in the exhibition • map of the Exhibition • online resources for the Classroom • Correlations to science framework • glossary amnh.org/namammals Essential QUESTIONS Who are — and who were — the North as tundra, winters are cold, long, and dark, the growing season American Mammals? is extremely short, and precipitation is low. In contrast, the abundant precipitation and year-round warmth of tropical All mammals on Earth share a common ancestor and and subtropical forests provide optimal growing conditions represent many millions of years of evolution. Most of those that support the greatest diversity of species worldwide. in this hall arose as distinct species in the relatively recent Florida and Mexico contain some subtropical forest. In the past. Their ancestors reached North America at different boreal forest that covers a huge expanse of the continent’s times. Some entered from the north along the Bering land northern latitudes, winters are dry and severe, summers moist bridge, which was intermittently exposed by low sea levels and short, and temperatures between the two range widely. during the Pleistocene (2,588,000 to 11,700 years ago). Desert and scrublands are dry and generally warm through- These migrants included relatives of New World cats (e.g. out the year, with temperatures that may exceed 100°F and dip sabertooth, jaguar), certain rodents, musk ox, at least two by 30 degrees at night. kinds of elephants (e.g. -
EU Zoo Inquiry Report Findings and Recommendations
1 THE EU ZOO INQUIRY 2011 An evaluation of the implementation and enforcement of EC Directive 1999/22, relating to the keeping of animals in zoos. REPORT FINDINGS AND RECOMMENDATIONS Written for the European coalition ENDCAP by the Born Free Foundation 2 THE EU ZOO INQUIRY 2011 An evaluation of the implementation and enforcement of EC Directive 1999/22, relating to the keeping of animals in zoos. REPORT FINDINGS AND RECOMMENDATIONS 3 CONTENTS Page ABBREVIATIONS USED ............................................ 04 TERMS USED ............................................................... 04 FOREWORD ................................................................. 05 RECOMMENDATIONS ................................................ 06 EC ZOOS DIRECTIVE 1999/22, SUCCESS, FAILURE – OR WORK IN PROGRESS? ..... 08 THE EU ZOO INQUIRY 2011 FINDINGS 11 INTRODUCTION .......................................................... 12 METHODOLOGY .......................................................... 14 TRANSPOSITION ........................................................ 17 IMPLEMENTATION ..................................................... 22 ENFORCEMENT ........................................................... 28 COMPLIANCE .............................................................. 30 COUNTRY REPORTS AND UPDATES 41 AUSTRIA............................................................ 42 BELGIUM........................................................... 43 BULGARIA ........................................................ 44 CYPRUS............................................................ -
Toward Successful Reintroductions: the Combined Importance of Species Traits, Site Quality, and Restoration Technique
Kaye: Toward Successful Reintroductions Proceedings of the CNPS Conservation Conference, 17–19 Jan 2009 pp. 99–106 © 2011, California Native Plant Society TOWARD SUCCESSFUL REINTRODUCTIONS: THE COMBINED IMPORTANCE OF SPECIES TRAITS, SITE QUALITY, AND RESTORATION TECHNIQUE THOMAS N. KAYE Institute for Applied Ecology, P.O. Box 2855, Corvallis, Oregon 97339-2855; Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 ([email protected]) ABSTRACT Reintroduction of endangered plant species may be necessary to protect them from extinction, provide connectivity between populations, and reach recovery goals under the U.S. Endangered Species Act. But what factors affect reintroduction success? And which matter more: traits inherent to the species, qualities of the site, or reintroduction technique? Here I propose that all three interact. First, reintroduction success will be highest for endangered species that share traits with non-rare native species, invasive plants, and species that excel in restoration plantings as reviewed from the ecological literature. Ten traits are identified as common to at least two of these groups. Second, reintroductions will do best in habitats ecologically similar to existing wild populations and with few local threats, such as non-native plants and herbivores. And third, the methods used to establish plants, such as planting seeds vs. transplants or selecting appropriate microsites, will influence outcomes. For any reintroduction project, potential pitfalls associated with a particular species, site, or technique may be overcome by integrating information from all three areas. Conducting reintroductions as designed experiments that test clearly stated hypotheses will maximize the amount and quality of information gained from each project and support adaptive management. -
Ecosystem-Level Effects of Keystone Species Reintroduction: a Literature Review Sarah L
REVIEW ARTICLE Ecosystem-level effects of keystone species reintroduction: a literature review Sarah L. Hale1,2 , John L. Koprowski1 The keystone species concept was introduced in 1969 in reference to top-down regulation of communities by predators, but has expanded to include myriad species at different trophic levels. Keystone species play disproportionately large, important roles in their ecosystems, but human-wildlife conflicts often drive population declines. Population declines have resulted in the necessity of keystone species reintroduction; however, studies of such reintroductions are rare. We conducted a literature review and found only 30 peer-reviewed journal articles that assessed reintroduced populations of keystone species, and only 11 of these assessed ecosystem-level effects following reintroduction. Nine of 11 publications assessing ecosystem-level effects found evidence of resumption of keystone roles; however, these publications focus on a narrow range of species. We highlight the deficit of peer-reviewed literature on keystone species reintroductions, and draw attention to the need for assessment of ecosystem-level effects so that the presence, extent, and rate of ecosystem restoration driven by keystone species can be better understood. Key words: ecosystem restoration, ecosystem-level effects, keystone species, population declines, reintroduction species in their ecosystems. Wolves prevent ungulate overpop- Implications for Practice ulation, and in doing so prevent overbrowsing of vegetation • More research into ecosystem-level effects of keystone (McLaren & Peterson 1994), and provide scavengers with car- species reintroduction is required to fully understand if, rion in winters (Wilmers et al. 2003). Sea otters consume sea and to what extent, keystone species act as a restoration urchins (Strongylocentrotus spp.), thereby maintain the integrity tool. -
Captive Breeding Genetics and Reintroduction Success
Biological Conservation 142 (2009) 2915–2922 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Captive breeding genetics and reintroduction success Alexandre Robert * UMR 7204 MNHN-CNRS-UPMC, Conservation des Espèces, Restauration et Suivi des Populations, Muséum National d’Histoire Naturelle, CRBPO, 55, Rue Buffon, 75005 Paris, France article info abstract Article history: Since threatened species are generally incapable of surviving in their current, altered natural environ- Received 6 May 2009 ments, many conservation programs require to preserve them through ex situ conservation techniques Received in revised form 8 July 2009 prior to their reintroduction into the wild. Captive breeding provides species with a benign and stable Accepted 23 July 2009 environment but has the side effect to induce significant evolutionary changes in ways that compromise Available online 26 August 2009 fitness in natural environments. I developed a model integrating both demographic and genetic processes to simulate a captive-wild population system. The model was used to examine the effect of the relaxation Keywords: of selection in captivity on the viability of the reintroduced population, in interaction with the reintro- Reintroduction duction method and various species characteristics. Results indicate that the duration of the reintroduc- Selection relaxation Population viability analysis tion project (i.e., time from the foundation of the captive population to the last release event) is the most Mutational meltdown important determinant of reintroduction success. Success is generally maximized for intermediate project duration allowing to release a sufficient number of individuals, while maintaining the number of generations of relaxed selection to an acceptable level. -
The 2008 IUCN Red Listings of the World's Small Carnivores
The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals). -
The Network of Conservatoires Botaniques Nationaux in France Bardin & Moret
The network of Conservatoires Botaniques Nationaux in France Bardin & Moret The network of Conservatoires Botaniques Nationaux in France and the implementation of the GSPC: results of fifteen years of activities Ph. Bardin and J. Moret Conservatoire Botanique National du Bassin parisien, Muséum National d’Histoire Naturelle, Paris, France Abstract The Conservatoire Botanique National of the Bassin Parisien: a leading role in plant diversity conservation in the French Ministry of Ecology and Sustainable Development (Departement Ecologie et Gestion de la Biodiversite) In France, the Conservatoires Botaniques Nationaux are responsible for the conservation of plant diversity. The Conservatoire Botanique National of the Bassin Parisien, which comes under the National Museum of Natural History, has five main activities, which are in total accordance with the targets of the GSPC. The communication will present many advancements which have been obtained in these five domains: 1. The ambitious programme of biodiversity inventory: it allows us today to provide a widely accessible list of two thousand known species, with more than three million data items (the seventh GBIF contributor). The database is useful to support public policies for territorial projects including biodiversity 2. The research activity is carried out on very limited size populations and include demographic and genetic studies, the development of protocols and relevant tools for ecological engineering 3. A large programme of ex situ conservation, with a seed bank, an in vitro micropropagation unit and a living collection as a back up for the in situ conservation projects 4. Numerous in situ programmes are carried out: population reinforcement, reintroduction and transplantation. At the same time, an ecological management of habitats is established to protect the ecosystems 5. -
How Far Is Too Far with a Mixed Breeding Program? Jessica Morgan, Agriculture Agent, Anson County
How Far is Too Far with a Mixed Breeding Program? Jessica Morgan, Agriculture Agent, Anson County We’ve all heard the horror stories of purebred dogs and their health problems while mutts seem to live forever. Obviously if you are a purebred breeder, you have an incredible amount of responsibility to uphold the characteristics of a breed. However, if you are a typical commercial cattlemen let’s take a look at how these thoughts can translate to our cattle herds. Why Crossbreed? Crossbred cattle can have some significant advantages over the use of one breed in your cattle. The two main benefits include hybrid vigor as well as combining the best strengths of the various breeds used to form the cross. Hybrid vigor, also known as heterosis, explains the superiority in performance of the crossbred animal compared to the average of the straightbred parents. Hybrid vigor is most noticeable in low heritable traits, such as growth rate, and reproductive efficiency. The most important advantage for crossbreeding is found in the crossbred cow. Maternal heterosis results in improvements in fertility, calf livability, calf weaning weight and cow longevity. Combining strengths between breeds is also an important reason for crossbreeding. For example, British Breeds (Angus & Hereford) are typically high in marbling potential where Continental breeds (Simmental, Charolais, Gelbveih) have offspring that have desirable levels of marbling and yield grade. Knowing the advantages of the breeds before you breed is important. True crossbreeding is a deliberate decision to produce cattle that have a known genetic makeup to pass genetics from parents to produce a calf with desirable characteristics. -
PLANT BREEDING David Luckett and Gerald Halloran ______
CHAPTER 4 _____________________________________________________________________ PLANT BREEDING David Luckett and Gerald Halloran _____________________________________________________________________ WHAT IS PLANT BREEDING AND WHY DO IT? Plant breeding, or crop genetic improvement, is the production of new, improved crop varieties for use by farmers. The new variety may have higher yield, improved grain quality, increased disease resistance, or be less prone to lodging. Ideally, it will have a new combination of attributes which are significantly better than the varieties already available. The new variety will be a new combination of genes which the plant breeder has put together from those available in the gene pool of that species. It may contain only genes already existing in other varieties of the same crop, or it may contain genes from other distant plant relatives, or genes from unrelated organisms inserted by biotechnological means. The breeder will have employed a range of techniques to produce the new variety. The new gene combination will have been chosen after the breeder first created, and then eliminated, thousands of others of poorer performance. This chapter is concerned with describing some of the more important genetic principles that define how plant breeding occurs and the techniques breeders use. Plant breeding is time-consuming and costly. It typically takes more than ten years for a variety to proceed from the initial breeding stages through to commercial release. An established breeding program with clear aims and reasonable resources will produce a new variety regularly, every couple of years or so. Each variety will be an incremental improvement upon older varieties or may, in rarer circumstances, be a quantum improvement due to some novel gene, the use of some new technique or a response to a new pest or disease.