Gene Dispersal in Tropical Trees: Ecological Processes and Genetic Consequences

Total Page:16

File Type:pdf, Size:1020Kb

Gene Dispersal in Tropical Trees: Ecological Processes and Genetic Consequences GENE DISPERSAL IN TROPICAL TREES: ECOLOGICAL PROCESSES AND GENETIC CONSEQUENCES by Na Wei A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in the University of Michigan 2015 Doctoral Committee: Associate Professor Christopher W. Dick, Chair Professor Deborah E. Goldberg Associate Professor Inés Ibáñez Assistant Professor Timothy Y. James © Na Wei 2015 ACKNOWLEDGMENTS Many people need to be acknowledged here. First, I would like to thank my advisor, Chris Dick, for his support all the way through my doctoral dissertation work. I would also like to thank my dissertation committee of Deborah Goldberg, Inés Ibáñez and Tim James for their intellectual input into my dissertation research. In addition, I must emphasize that most of work in this dissertation would not have been possible without my collaborators Matteo Detto, Marjolein Bruijning, Jordan Bemmels, Andrew Lowe and Michael Gardner. I am very grateful to the Panamanian field technicians, Yuriza Guerrero, Anayansi Cerezo and Oldemar Valdez, for assisting me in surveying, mapping and collecting plant samples in the tropical rainforests on Barro Colorado Island, Panama. I thank my husband, Yubo Xia, for helping me with the molecular laboratory work. Lastly, I would like to acknowledge with gratitude, the funding support provided by a CTFS-ForestGEO Grant from the Center for Tropical Forest Science and Smithsonian Tropical Research Institute, an International Research Award and a Graduate Student Research Grant from Rackham Graduate School, a Winifred B. Chase Fellowship from Matthaei Botanical Gardens and Nichols Arboretum, an Angeline B. Whittier Fellowship and an Emma J. Cole Fellowship from the Department of Ecology and Evolutionary Biology, as well as the financial support provided by a Barbour Scholarship from Rackham Graduate School and fellowships from EEB department. ii TABLE OF CONTENTS ACKNOWLEDGMENTS ii LIST OF FIGURES v LIST OF TABLES vii ABSTRACT ix CHAPTER I. Introduction 1 II. The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio 15 Abstract 15 Introduction 17 Materials and Methods 21 Results 27 Discussion 33 Appendix A Polymorphic microsatellite loci for Virola sebifera (Myristicaceae) derived from shotgun 454 pyrosequencing 60 iii Appendix B Characterization of twenty-six microsatellite markers for the tropical pioneer tree species Cecropia insignis Liebm. (Urticaceae) 69 Appendix C Polymorphic microsatellite markers for a wind-dispersed tropical tree species, Triplaris cumingiana (Polygonaceae) 76 III. Seed dispersal drives spatial genetic patterns in tropical trees 87 Abstract 87 Introduction 89 Methods 92 Results 101 Discussion 104 IV. Frequent long-distance seed and pollen dispersal and their genetic impacts in tropical trees 140 Abstract 140 Introduction 142 Materials and Methods 146 Results 153 Discussion 160 V. Conclusions 198 iv LIST OF FIGURES FIGURE 2.1 Frequency distribution of CCS read lengths generated by 500-bp genomic shotgun circular consensus sequencing 43 2.2 Base quality scores of CCS reads before (untrimmed) and after (trimmed) quality control 44 2.3 Motif length-specific microsatellite loci identified from quality-controlled CCS reads 45 2.4 The effects of read length on microsatellite yield (a–b), genomic redundancy detection (c), and primer design success rate (d) 46 2.5 Simulations of microsatellite amplification rate in relation to sequencing errors 47 2.6 The effect of quality control on microsatellite locus amplification 48 2S.1 Frequency distribution of mean quality score of individual CCS reads before (untrimmed) and after quality control (trimmed) 51 2S.2 Homopolymer lengths of CCS reads 52 2S.3 The number of CCS reads generated by a single SMRT cell 53 2S.4 Negative correlation between sequence quality and sequence length in raw CCS reads 54 2S.5 Positive correlation between sequence quality and sequence length in post-QC CCS reads 55 2S.6 Positive correlation between homopolymer length and raw CCS read length 56 2S.7 Base position GC content of CCS reads before (black) and after quality control (grey) 57 3.1 Spatial genetic structure in seedling banks (a) and adults trees (b) of the four 114 v tropical tree species 3.2 Spatial genetic structure of seedlings to female trees and to male trees 115 3.3 Posterior distribution of median seed dispersal distance inferred from the spatial genetic structure of seedlings using the approximate Bayesian computation method 116 3.4 Posterior distribution of median pollen dispersal distance inferred from the spatial genetic structure of seedlings using the approximate Bayesian computation method 117 3.5 Spatial genetic structure of seedlings as a function of median seed and pollen dispersal distance 118 3S.1 Correlogram of spatial genetic structure 132 3S.2 Spatial patterns of seedlings and adult trees 133 3S.3 Spatial genetic relatedness of seedlings to the subset of female and male trees 134 3S.4 Posterior distribution of mating neighborhood size 135 3S.5 Validating ABC inference of median seed dispersal distance 136 3S.6 Validating ABC inference of Nm 137 3S.7 SGS as a function of median seed and pollen dispersal distance 138 4.1 Frequency distribution of seed dispersal distances based on parentage inference 178 4.2 Frequency distribution of pollen dispersal distances based on parentage inference 179 4.3 Comparisons between seed and pollen dispersal distances 180 4S.1 Frequency distribution of pollen-mediated gene dispersal distances 194 4S.2 Comparisons between distances of father trees to mother trees and distances to the tenth nearest female neighbors 195 4S.3 Comparisons between seed and pollen-mediated gene dispersal 196 vi LIST OF TABLES TABLE 2.1 Sequencing capacity and microsatellite throughput of 500-bp genomic shotgun circular consensus sequencing using four SMRT cells per species 49 2.2 Cross-platform comparisons of next-generation sequencing (NGS) use in microsatellite development 50 2S.1 Simulations of microsatellite detection effectiveness in relation to read length when sequencing errors were not introduced 58 2S.2 Simulations of microsatellite detection effectiveness in relation to read length when PacBio CCS error profiles were used 59 A1 Characteristics of ten polymorphic SSR markers developed in Virola sebifera 67 A2 Summary statistics of SSR marker polymorphism screened in 42 V. sebifera individuals located in the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama 68 B1 Characteristics of 26 microsatellite markers developed in Cecropia insignis 74 C1 Characteristics of twelve polymorphic microsatellite markers developed in Triplaris cumingiana 83 C2 Summary statistics of microsatellite marker polymorphism tested on 47 reproductively mature trees of Triplaris cumingiana 84 C3 Additional 14 polymorphic microsatellite markers of Triplaris cumingiana screened on 12 individuals sampled from the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama 85 3S.1 Allelic richness of microsatellite markers 130 3S.2 Relative bias and relative root mean square error of ABC parameter estimates 131 vii 4.1 Median seed and pollen dispersal distance 176 4.2 Simulated genetic impacts of near vs. far-tail seed and pollen dispersal 177 4S.1 Genotyping error rates assumed in parentage inference using COLONY program 188 4S.2 Estimated parameters of seed dispersal models–GSMi, GSM, SSMi and SSM 189 4S.3 Estimated parameters of pollen dispersal model CSMi 190 4S.4 Simulated genetic impacts of near vs. far-tail seed and pollen dispersal following algorithm 1 in Appendix 4S.2 191 4S.5 Simulated genetic impacts of near vs. far-tail seed and pollen dispersal following algorithm 2 in Appendix 4S.2 192 4S.6 Simulated genetic impacts of near vs. far-tail seed and pollen dispersal following algorithm 3 in Appendix 4S.2 193 viii ABSTRACT Tropical trees constitute an ecologically important functional group in terrestrial ecosystems because of the essential roles that they play in sustaining biodiversity and carbon storage. The persistence and evolutionary potentials of tropical trees are, however, increasingly threatened by human-induced rapid changes in abiotic and biotic environments. For long-lived forest trees, gene dispersal by seeds and pollen is critical for tracking shifting climatic niches and for maintaining genetic variation needed to adapt to changing environments. Understanding the potential responses of tropical trees to environmental changes depends in part upon quantifying the rates of seed and pollen dispersal. This dissertation aims to quantify the spatial extent and magnitude of seed and pollen dispersal and their respective genetic impacts in a comparative context, by focusing on four Neotropical tree species that have distinct dispersal and pollination syndromes and life-history strategies. By using parentage inference and inverse modeling, I found that long-distance gene dispersal by seeds is common in these vertebrate-dispersed tropical trees, in which models predicted 1–18% of dispersal events exceeding 1 km. This fraction of pollen dispersal >1 km could reach 10–20% in these species. Furthermore, simulations with gene dispersal distances realistically represented suggest that seed and pollen dispersal limitation can lead to genetic diversity loss in tropical tree populations. By examining the respective genetic impacts of seed vs. pollen dispersal, I found that seed dispersal is the primary force driving
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Dispersal of a Neotropical Nutmeg (Virola Sebifera) by Birds
    DISPERSAL OF A NEOTROPICAL NUTMEG (VIROLA SEBIFERA) BY BIRDS HENRY F. HOWE Program in Evolutionary Ecologyand Behavior, Department of Zoology, University of Iowa, Iowa City, Iowa 52242 USA Al•ST•CT.--Feeding assemblagesof birds were observedat a Panamanian population of Virola sebifera (Myristicaceae) in order to test the hypothesisthat plants producing especiallynutritious fruits in limited supply should be efficiently dispersedby a small set of obligate frugivores. Virola sebifera producesan encapsulatedarillate seedthat is swallowed by birds shortly after dehiscence. The aril (54% lipid, 7% protein, 8% usable carbohydrate) is retained; the seed is regurgitated intact within 10-30 min. The plant produces 1-96 (Yc= 24) ripe arillate seedseach day, of which 40-89% (Yc= 76%) are taken within a few hours of dawn. The visitor assemblageconsists of six resident frugivores. Three [Chestnut-mandibledToucan (Ramphastosswainsonii), Keel-billed Toucans (R. sulfuratus), and Masked Tityra (Tityra semifasciata)] are "regulars," likely to visit all trees; three [Slaty-tailed Trogon (2•rogonmassena), Rufous Motmot (Baryphthengus martii), and Collared Aracari (Pteroglossustorquatus) are common throughout the Barro Colorado Forest but do not consistently use Virola sebifera. The Chestnut-mandibled Toucan is responsiblefor 43% of the seedsremoved by birds, although it is also responsiblefor more seedwaste (regurgi- tation under the tree crown) than other visitors. Rapid depletion of available fruits each morning and active defense of the crowns by toucans suggest a limited and preferred food resource for "regulars"in the assemblage. A review of recent work indicatesthat the assemblagevisiting Virola sebiferais similar to that frequenting its larger congener (V. surinamensis) but is far smaller and more specialized than those visiting other fruiting trees in the same forest.
    [Show full text]
  • The Status of Cecropia (Urticaceae) Introductions in Malesia: Addressing the Confusion
    Blumea 57, 2012: 136–142 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651912X657567 The status of Cecropia (Urticaceae) introductions in Malesia: addressing the confusion B.J. Conn1, J.T. Hadiah2, B.L. Webber3 Key words Abstract As part of the great global movement of plants in the 18th and 19th centuries, many valuable and com- mercial plants were sent from the Neotropics to Europe as seeds or as live specimens. Cecropia (Urticaceae) alien was in cultivation in England in 1789, yet species delimitation was not well-understood until much later, long after Cecropia subsequent introductions to other tropical regions where alien populations are now invasive. The earliest record of Indonesia Cecropia being cultivated in Malesia is based on material of C. peltata thought to have been sent from the Royal invasion history Botanic Gardens Kew to ’s Lands Plantentuin (Buitenzorg) in Jawa, Indonesia, sometime between 1862 and early Jawa 1868. In 1902, C. peltata was first cultivated in the botanical gardens of Singapore and introduced to Peninsular Malaysia Malaysia in 1954. The source of these latter introductions is uncertain. Many researchers have assumed that plant identification C. peltata is the only species of Cecropia introduced in Indonesia, Malaysia and Singapore. We confirm that Singapore C. peltata is naturalised in Singapore and is invasive on the island of Jawa, Indonesia, and in Peninsular Malaysia. Urticaceae However, a second introduced species, C. pachystachya, has also been discovered as invasive in both Jawa and Singapore. There is no evidence for the third previously introduced species, C.
    [Show full text]
  • 1980 121 Wood Anatomy of Horsfieldia
    IAWABulletinn.s., Vol. 1 (3), 1980 121 WOOD ANATOMY OF HORSFIELDIA (MYRlSTICACEAE) by J. E. Armstrong and T. K. Wilson Department of Biological Sciences, Illinois State University, Normal, Illinois 61761, U. S. A. and Department of Botany, Miami University, Oxford, Ohio 45056, U.S.A. Summary The wood of Horsfieldia is, on the whole, (Garratt, 1933) was based on a small number very homogeneous. The greatest differences of specimens and the descriptions were rather observed are related to the relative age of the general. Siddiqi and Wilson (1974) have provi­ specimens. In contrast to the wood of Knema ded a comprehensive study of the genus the mature wood of Horsfieldia lacks oil cells Knema. Siddiqi and Wilson were unable to in the rays and has a predominance of simple weigh intra-family relationships due to the lack perforation plates as well as shorter, wider of information on the other genera. From vessel elements and wider rays. The homogenei­ available information they judged Knema to be ty of the secondary xylem of Horsfieldia makes more similar to Myristica than Gymnacranthera it of little taxonomic value on a specific level. and supported Garratt's conclusion that Based on wood anatomy, Horsfieldia can be Horsfieldia stands apart from the other three distinguished from the other three Asiatic southeast Asia genera. Hopefully this study will genera of the Myristicaceae. help clarify the position and relationships of Horsfieldia within the Myristicaceae, as well as Introduction determine whether there is any anatomical Horsfieldia is the second largest genus of support for the division of the genus into the nutmeg family with 70-80 species.
    [Show full text]
  • Cecropia Peltata Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cecropia peltata Click on images to enlarge Family Urticaceae Scientific Name Cecropia peltata L. Linnaeus, C. von (1759) Systema Naturae, Editio Decima 2: 1286. Type: Jamaica. Common name Leaves and inflorescence. Copyright ATH Trumpet Tree; Snakewood Weed * Stem Fast growing tree to 20 m tall. Stems distinctly hollow, sometimes with pores that enable ants to enter and nest. Stilt roots may be present from 1 m up trunk. Leaf scars are obvious. Leaves Leaf underside. Copyright ATH Large leaves resembling paw-paw, with 12 deep lobes up to halfway towards base, margins wavy. Midrib distinctly raised near base but flat towards midle and apex. Underside pale, minutely hairy; top side darker, scabrous. Stipules large, bifurcate, hairy, to 15 cm long, green turning pale brown when about to fall. Base of petiole is swollen and has a mass of glands turning black with age, where ants feed. Flowers Male and female flowers occur on different plants. Male flowers in umbellate culsters of spikes 10-18 cm Inflorescence. Copyright ATH long in culsters of 3-9. Female flowers in spikes 17-30 cm long, in clusters of 2-4. Fruit Fruit cylindrical, ovoid to oblong-ovoid, somewhat flattened, 3.3-3.7 mm long, with soft, sweet flesh around many small seeds. Seedlings Features not available. Bud and leaf sheath. Copyright ATH Distribution and Ecology A serious weed with records of naturalised plants in NEQ, mainly near Mission Beach.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Myristicaceae
    BLUMEA 42 (1997) 111-190 Notes on Southeast Asian and Malesian Myristica and description of new taxa (Myristicaceae). With keys arranged per geographical area (New Guinea excepted) W.J.J.O. de Wilde Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands Summary Following the introductory sections, a general key, and regional keys, noteworthy observations are whole distributional of the of given for selected species of Myristica covering the area genus west New Guinea. New taxa, i.e. species (14), subspecies (10), and varieties (2) are fully described and annotated. All accepted names are arranged alphabetically, followed by an index. Contents Introduction 112 References 112 Acknowledgements 113 General key for Continental Southeast Asia, Malesia, and Australia (excl. New Guinea and the Pacific) 113 Regional key for Continental Southeast Asia 123 Regional key for West Malesia 124 Regional key for East Malesia (most of New Guinea excepted) 128 Enumeration of the partial areas and concerning keys 133 1. India, Sri Lanka (with partial keys) 133 2. Continental Southeast Asia 134 3. Malay Peninsula and Singapore 134 4. Sumatra 135 5. Java (with general key to areas 3, 4 & 5) 135 6. Borneo (with regional key) 138 7. Philippines (with regional key) 141 8. Sulawesi (with regional key) 144 9. Moluccas (incl. Aru Islands) 145 10. Lesser Sunda Islands 145 List of annotated or described and accepted taxa, newly alphabetically arranged . 146 Index 189 112 BLUMEA —Vol. 42, No. 1, 1997 Introduction With the completion of the revision of all Myristica material in the Leiden collection, with extension to most of the materials of the Kew herbarium and incidental loans of important collections of other herbaria, quite a number of new taxa were still to be published.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • A Molecular Taxonomic Treatment of the Neotropical Genera
    An Intrageneric and Intraspecific Study of Morphological and Genetic Variation in the Neotropical Compsoneura and Virola (Myristicaceae) by Royce Allan David Steeves A Thesis Presented to The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Botany Guelph, Ontario, Canada © Royce Steeves, August, 2011 ABSTRACT AN INTRAGENERIC AND INTRASPECIFIC STUDY OF MORPHOLOGICAL AND GENETIC VARIATION IN THE NEOTROPICAL COMPSONEURA AND VIROLA (MYRISTICACEAE) Royce Allan David Steeves Advisor: University of Guelph, 2011 Dr. Steven G. Newmaster The Myristicaceae, or nutmeg family, consists of 21 genera and about 500 species of dioecious canopy to sub canopy trees that are distributed worldwide in tropical rainforests. The Myristicaceae are of considerable ecological and ethnobotanical significance as they are important food for many animals and are harvested by humans for timber, spices, dart/arrow poison, medicine, and a hallucinogenic snuff employed in medico-religious ceremonies. Despite the importance of the Myristicaceae throughout the wet tropics, our taxonomic knowledge of these trees is primarily based on the last revision of the five neotropical genera completed in 1937. The objective of this thesis was to perform a molecular and morphological study of the neotropical genera Compsoneura and Virola. To this end, I generated phylogenetic hypotheses, surveyed morphological and genetic diversity of focal species, and tested the ability of DNA barcodes to distinguish species of wild nutmegs. Morphological and molecular analyses of Compsoneura. indicate a deep divergence between two monophyletic clades corresponding to informal sections Hadrocarpa and Compsoneura. Although 23 loci were tested for DNA variability, only the trnH-psbA intergenic spacer contained enough variation to delimit 11 of 13 species sequenced.
    [Show full text]
  • Myristicaceae
    1762 TROPICAL FORESTS / Myristicaceae Burtt Davy J (1938) Classification of Tropical Woody importance. Fruit of the Myristicaceae, particularly Vegetation Types. Oxford, UK: Imperial Forestry In- the lipid-rich aril surrounding the seed in some stitute. species, are important as food for birds and mam- Champion HG and Seth SK (1968) Revised Survey of the mals of tropical forests. Numerous species are valued Forest Types of India. New Delhi, India: Manager of by humans as sources of food, medicine, narcotics, Publications, Government of India. and timber, including Myristica fragrans, the source Collins NM, Sagyer JA, and Whitmore TC (eds) (1991) of nutmeg and mace, the spices of commerce. The Conservation Atlas of Tropical Forests: Asia and Pacific. London: Macmillan. Throughout the geographical range of Myristica- Edward MV (1950) Burma Forest Types. Indian Forest ceae, aromatic leaves, often stellate pubescence, a Records (new series). Silviculture 7(2). Dehra Dun, India: unique arborescent architecture (Figure 1), and sap Forest Research Institute. the color of blood (Figure 2) are characteristics that Holmer CH (1958) The broad pattern of climate and strongly enhance recognition of this family in the vegetation distribution in Ceylon. In Proceedings of a field. Species of this family are usually dioecious. Symposium on Humid Tropics Vegetation, Kanly. Paris: Flowers are tiny and found in paniculate inflores- UNESCO. cences, with filaments of stamens fused into a IUCN (1988) The Red Data Book. Switzerland: IUCN. column, giving rise to either free or fused anthers Kurz S (1877) Forest Flora of British Burma, 2 vols. (Figures 3 and 4). Fruits are one-seeded, dehiscent or Calcutta, India: Bishen Singh, Dehra Dun.
    [Show full text]
  • Biologia Reprodutiva E Fenologia De Virola Sebifera Aubl. (Myristicaceae) Em Mata Mesofítica De Uberlândia, MG, Brasil EDDIE LENZA1,3 E PAULO EUGÊNIO OLIVEIRA2
    Revista Brasil. Bot., V.29, n.3, p.443-451, jul.-set. 2006 Biologia reprodutiva e fenologia de Virola sebifera Aubl. (Myristicaceae) em mata mesofítica de Uberlândia, MG, Brasil EDDIE LENZA1,3 e PAULO EUGÊNIO OLIVEIRA2 (recebido: 3 de novembro de 2005; aceito: 27 de julho de 2006) ABSTRACT – (Reproductive biology and phenology of Virola sebifera Aubl. (Myristicaceae) in a mesophytic forest of Uberlândia, MG, Brazil). We studied some aspects of the floral and reproductive biology of Virola sebifera Aubl., a dioecious woody species of mesophytic forest in Uberlândia, Minas Gerais. The sex of 54 individuals in the study area was determined in three consecutive reproductive periods. Reproductive phenology of 11 individuals of each sex was followed from October 1998 to April 2000. The sex ratio was always male biased and no sex change was observed, which indicates sexual stability. The flowering was annual, relatively long and massive (cornucopia type) with male individuals blooming earlier and for a longer period than the female ones. Flowers, grouped in paniculate inflorescences, were small (3 and 4 mm long for male and female flowers respectively) and inconspicuous, with an infundibuliforme periant and inserted reproductive whorls. Both male and female flowers have long lifespan (ca. one week). Pollen in male flowers is the sole floral reward. Strong scent and similar flower morphology between sexes may lead to visits to rewardless female flowers (floral self-mimicry). Natural pollination resulted in relatively low number of initiated fruits (5.8%). Fruit-set from bagged unpollinated flowers (apomixis) were much lower than from natural pollination. These results show that V.
    [Show full text]