Recent Advances in Enzymatic and Chemoenzymatic Cascade Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0. -
Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance
J. AMER. SOC. HORT. SCI. 127(1):45–49. 2002. Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance S. Ball, Y.L. Qian,1 and C. Stushnoff Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173 DDITIONAL INDEX WORDS A . Buchloe dactyloides, cold hardiness, fructose, glucose, raffinose, sucrose, LT50 ABSTRACT. No information is available regarding endogenous soluble carbohydrate accumulation in buffalograss [Buchloe dactyloides (Nutt.) Engelm.] during cold acclimation. The objective of this study was to determine composition of soluble carbohydrates and their relationship to freezing tolerance in two buffalograss cultivars, 609 and NE 91-118, with different freezing tolerances. The experiment was conducted under natural cold acclimation conditions in two consecutive years in Fort Collins, Colo. Based upon average LT50 (subfreezing temperature resulting in 50% mortality) from seven sampling intervals in 1998–99 and six sampling intervals in 1999–2000, ‘NE 91-118’ survived 4.5 °C and 4.9 °C colder temperatures than ‘609’, during the 1998-1999 and 1999–2000 winter seasons, respectively. Glucose, fructose, sucrose, and raffinose were found in both cultivars in both years, and were generally higher in acclimated than pre- and post-acclimated stolons. Stachyose was not present in sufficient quantities for quantification. Cultivar NE 91-118 contained 63% to 77% more glucose and 41% to 51% more raffinose than ‘609’ in the 1998–99 and 1999–2000 winter seasons, respectively. In 1999–2000, fructose content in ‘NE 91-118’ was significantly higher than that of ‘609’. A significant negative correlation was found between LT50 vs. all carbohydrates in 1999–2000, and LT50 vs. -
The Analysis for Alteration in Starch Biosynthesis Metabolism in a Japonica Rice Grain Mutant Which Does Not Accumulate Starch
MOJ Proteomics & Bioinformatics Research Article Open Access The analysis for alteration in starch biosynthesis metabolism in a japonica rice grain mutant which does not accumulate starch Abstract Volume 7 Issue 5 - 2018 Rice grain‒filling is an important agronomic trait that contributes greatly to grain Weidong Xu,1,2 Chunhai Shi,1 Zhenzhen weight. A grain mutant from the japonica cultivar Nipponbare by mutagenesis with 1 1 3 ethyl methane sulfonate (EMS), which had no accumulation of starch granules in Cao, Fangmin Cheng, Jianguo Wu 1Department of Agronomy, Zhejiang University, China endosperm with a transparent liquid during grain filling stage, was used to analyze 2Jiaxing Academy of Agricultural Sciences Institute, China the caryopsis development and starch biosynthesis metabolism in present study. 3Department of Horticulture, Zhejiang A&F University, China Measurement of soluble substances in the liquid of developing endosperm showed that there was remarkably higher soluble sugar content in this no starch mutant. Correspondence: Chunhai Shi, Agronomy Department, Semi‒quantitative reverse transcription‒PCR (RT‒PCR) analysis of the starch‒ College of Agriculture and Biotechnology, Zhejiang University, synthesizing genes revealed that soluble starch synthase1 (SSS1) gene could be Yuhangtang Road 866, Hangzhou 310058, PR. China, Tel normally expressed in the mutant. Substantially lower expressions of starch branching +86 57188982691, Email [email protected] enzyme1 (SBE1), isoamylase1 (ISA1) and pullulanase (PUL) were detected in the no starch mutant compared with the wild type, whereas the expression of ADP‒glucose Received:‒ September 19, 2018 | Published: October 31, 2018 pyrophosphorylase large subunit 1 (AGPL1) and ADP‒glucose pyrophosphorylase small subunit 1 (AGPS1) were visibly increased. -
Carbohydrates Are Defined As Polyhydroxy Aldehydes Or Polyhydroxy Ketones Or Compounds That on Hydrolysis Produce Either Acetic Acid and Lactic Acid
¾ Carbohydrates are defined as polyhydroxy aldehydes or polyhydroxy ketones or compounds that on hydrolysis produce either acetic acid and lactic acid. They are substances of universal occurrence and are much abundant in plants rather than in animals. ¾ Carbohydrates are grouped into two major classes: simple sugars (saccharides) and polysaccharides. Low molecular weight carbohydrtes are crystalline, soluble in water and sweet in taste; example glucose, fructose and sucrose. The high molecular weight carbohydrates (polymers) are amorphous, tasteless and relatievly less soluble in water; example starch, cellulose, gums, pectins, inulin etc. Bioses : Two carbon atom. Trisoes: Three carbon atoms, but in the form of phospheric esters, eg: glyceraldehyde Tetroses : Four carbon atoms eg: erythroses Pentoses: hemicellulose, mucilage ad gums Hexoses : six carbon atoms aldoses: glucose, mannose, galactose. ketoses: fructose and sorbose Carbohydrates which upon hydrolysis yield two molecules of monosaccharide are called as disaccharides. Sucrose on hydrolysis gives glucose and fructose (sugarcane) Maltose on hydrolysis gives glucose and glucose (malt sugar) Lactose on hydrolysis gives glucose and galactose (cow’s milk) These liberate three molecules of monosaccharides on hydrolysis. Raffinose on hydrolysis gives glucose , fructose and galactose. Gentianose on hydrolysis gives two glucose molecules and fructose Scillatriose , mannotrose , phanteose are the other examples. Stachyose , a tetrasaccharide, yields on hydrolysis , four molecules -
GRAS Notice 896, Alpha-Galacto-Oligosaccharides
GRAS Notice (GRN) No. 896 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory NOV 1 8 2019 OFFICE OF FOOD ADDITI\/t: SAFETY GENERALLY RECOGNIZED AS SAFE (GRAS) NOTIFICATION FOR ALPHA-GALACTO OLIGOSACCHARIDES (ALPHAGOS®) IN CONVENTIONAL FOODS AND BEVERAGES AND NON-EXEMPT INFANT FORMULAS Prepared for: Olygose Pare Technologique des Rives de l'Oise BP 50149, F-60201 Compiegne Cedex France Prepared by: Spherix Consulting Group, Inc. 11821 Parklawn Drive, Suite 310 Rockville, MD 20852 USA November 13, 2019 GRAS Notification for the Use of alpha-GOS November 13, 2019 Prepared for Olygose TABLE OF CONTENTS I. SIGNED STATEMENT OF THE CONCLUSION OF GENERALLY RECOGNIZED AS SAFE (GRAS) AND CERTIFICATION OF CONFORMITY TO 21 CFR §170.205-170.260 .... 1 A. SUBMISSION OF GRAS NOTICE .................................................................................1 B. NAME AND ADDRESS OF THE SPONSOR ................................................................1 C. COMMON OR USUAL NAME .......................................................................................1 D. TRADE SECRET OR CONFIDENTIAL INFORMATION ............................................1 E. INTENDED USE ..............................................................................................................1 F. BASIS FOR GRAS DETERMINATION .........................................................................1 G. PREMARKET APPROVAL ............................................................................................3 H. AVAILABILITY OF -
And Honeydew Sugars with Respect to Their Utilization by the Hymenopteran Parasitoid Cotesia Glomerata F.L
Journal of Insect Physiology 47 (2001) 1077–1084 www.elsevier.com/locate/jinsphys A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata F.L. Wa¨ckers * Institute of Plant Sciences, Applied Entomology, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland Received 10 October 2000; received in revised form 12 February 2001; accepted 19 February 2001 Abstract Fourteen naturally occurring sugars were individually tested with respect to their effect on Cotesia glomerata longevity. Parasitoids kept with solutions of either sucrose, glucose and fructose lived for Ͼ30 days. This constitutes a factor 15 increase in life span in comparison to control individuals kept with water only. Stachyose, mannose, melezitose, melibiose, maltose and erlose increased parasitoid longevity by a factor of 11.2–6.9. Solutions of galactose and trehalose had a marginal, but still significant effect. Lactose and raffinose did not raise parasitoid longevity, while rhamnose actually reduced parasitoid survival. In an additional experiment, the relationship between quantity of sugar consumption and longevity was established for all 14 sugars. To study the effect of an unsuitable sugar in sugar mixtures, a range of glucose:rhamnose mixtures was tested. Even at 20% of the sugar mixture rhamnose suppressed the nutritional benefit of the 80% glucose. The nutritional suitability of the sugars shows a positive correlation with the previously reported gustatory response towards the individual sugars. Patterns of sugar utilization are discussed with respect to hydrolytic enzymes and carbohydrate biochemical characteristics. Our findings for C. glomerata are compared to patterns of sugar utilization reported for other species. -
Pioneer Hi-Bred International, Inc. High Oleic 305423 Soybean
Pioneer Hi-Bred International, Inc. High Oleic 305423 Soybean OECD Unique Identifier: DP-3Ø5423-1 Draft Environmental Assessment June 2009 Agency Contact Cynthia Eck Document Control Officer Biotechnology Regulatory Services USDA, APHIS Riverdale, MD 20737 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720– 5964 (voice and TDD). USDA is an equal opportunity provider and employer. __________________________________________________________ Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. __________________________________________________________ This publication reports research involving pesticides. All uses -
Mslsc2001c04
Metabolism MSLSC2001C04 Course Instructor Dr. Gautam Kumar Dr.Gautam Kr. Dept. of Life Sc. 1 Dr.Gautam Kr. Dept. of Life Sc. 2 Dr.Gautam Kr. Dept. of Life Sc. 3 Dr.Gautam Kr. Dept. of Life Sc. 4 • Cellulose is a major constituent of plant cell walls, providing strength and rigidity • Preventing the swelling of the cell and rupture of the plasma membrane • Plants synthesize more than 1011 metric tons of cellulose, making this simple polymer one of the most abundant compounds in the biosphere. • cellulose must be synthesized from intracellular precursors but deposited and assembled outside the plasma membrane. Dr.Gautam Kr. Dept. of Life Sc. 5 • Terminal complexes, also called rosettes, to be composed of six large particles arranged in a regular hexagon. • The outside surface of the plant plasma membrane in a freeze-fractured sample, viewed here with electron microscopy • Enzyme complex includes a catalytic subunit with eight transmembrane segments and several other subunits that are presumed to act in threading cellulose chains through the catalytic site and out of the cell, and in the crystallization of 36 cellulose strands into the paracrystalline microfibrils Rosettes Dr.Gautam Kr. Dept. of Life Sc. 6 • The complex enzymatic machinery that assembles cellulose chains spans the plasma membrane • UDP-glucose, in the cytosol and another part extending to the outside, responsible for elongating and crystallizing cellulose molecules in the extracellular space. • UDP-glucose used for cellulose synthesis is generated from sucrose produced during photosynthesis, by the reaction catalysed by sucrose synthase • Cellulose synthase spans the plasma Model for the structure of membrane and uses cytosolic UDP-glucose as Cellulose synthase. -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
Generate Metabolic Map Poster
Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. -
Leloir Glycosyltransferases in Applied Biocatalysis: a Multidisciplinary Approach
International Journal of Molecular Sciences Review Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach Luuk Mestrom 1, Marta Przypis 2,3 , Daria Kowalczykiewicz 2,3, André Pollender 4 , Antje Kumpf 4,5, Stefan R. Marsden 1, Isabel Bento 6, Andrzej B. Jarz˛ebski 7, Katarzyna Szyma ´nska 8, Arkadiusz Chru´sciel 9, Dirk Tischler 4,5 , Rob Schoevaart 10, Ulf Hanefeld 1 and Peter-Leon Hagedoorn 1,* 1 Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; [email protected] (L.M.); [email protected] (S.R.M.); [email protected] (U.H.) 2 Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; [email protected] (M.P.); [email protected] (D.K.) 3 Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland 4 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; [email protected] (A.P.); [email protected] (A.K.); [email protected] (D.T.) 5 Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany 6 EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany; [email protected] 7 Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland; [email protected] 8 Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice Poland.; [email protected] 9 MEXEO Wiesław Hreczuch, ul. -
An Evolving Hierarchical Family Classification for Glycosyltransferases
doi:10.1016/S0022-2836(03)00307-3 J. Mol. Biol. (2003) 328, 307–317 COMMUNICATION An Evolving Hierarchical Family Classification for Glycosyltransferases Pedro M. Coutinho1, Emeline Deleury1, Gideon J. Davies2 and Bernard Henrissat1* 1Architecture et Fonction des Glycosyltransferases are a ubiquitous group of enzymes that catalyse the Macromole´cules Biologiques transfer of a sugar moiety from an activated sugar donor onto saccharide UMR6098, CNRS and or non-saccharide acceptors. Although many glycosyltransferases catalyse Universite´s d’Aix-Marseille I chemically similar reactions, presumably through transition states with and II, 31 Chemin Joseph substantial oxocarbenium ion character, they display remarkable diversity Aiguier, 13402 Marseille in their donor, acceptor and product specificity and thereby generate a Cedex 20, France potentially infinite number of glycoconjugates, oligo- and polysacchar- ides. We have performed a comprehensive survey of glycosyltransferase- 2Structural Biology Laboratory related sequences (over 7200 to date) and present here a classification of Department of Chemistry, The these enzymes akin to that proposed previously for glycoside hydrolases, University of York, Heslington into a hierarchical system of families, clans, and folds. This evolving York YO10 5YW, UK classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames. q 2003 Elsevier Science Ltd. All rights reserved Keywords: glycosyltransferases; protein families; classification; modular *Corresponding author structure; genomic annotations The biosynthesis of complex carbohydrates and are involved in glycosyl transfer and thus conquer polysaccharides is of remarkable biological import- what Sharon has provocatively described as “the ance.