Some Consequences of Kepler, Galileo, and Newton Equations∗

Total Page:16

File Type:pdf, Size:1020Kb

Some Consequences of Kepler, Galileo, and Newton Equations∗ Some Consequences of Kepler, Galileo, and Newton Equations∗ "Science is a differential equation; Religion is a boundary condition" - Alan Turing ( 1912 - 1954 ) "Too Soon from the Cave, Too Far from the Stars" - Ray Bradbury ( 1920 - 2012 ) [ ∗ note: most of the following examples are used in the future upcoming 'Relativity Science Calculator' Mac software application ] § Determining the mass of the earth: § Determining earth's velocity around the sun: Relativity Science Calculator § Determining the mass of the sun: NASA: Giant solar eruption - April 16, 2012 The centripetal force exerted by the sun keeping earth in its near perfect circular orbit is equal but opposite to earth's centrifugal force as follows And because of Newton's Law of Universal Gravitation, we equate the following: Notice that if we take the ratio of sun mass to earth mass we get the following: which means that the sun's mass is at least 300,000 times greater than earth's!! § Determining the mass of any other solar system planet: Simply use the following Newton equation where the sun's mass and centripetal force will determine the planet's orbital velocity as follows Relativity Science Calculator which is equivalent to Now, in our solar system all of the planets except Mercury, Mars and the outer, dwarf - planet Pluto are almost perfectly circular. And for these non - circular elliptical orbits, radius is simply replaced by the semi-major axis of the orbital ellipse. Finally, notice that Newton's equations validate Kepler's 3rd Law ( Harmonic Law ) - i.e., the square of a planet's orbital period is directly proportional to the cube of the planet's mean distance ( semi-major axis of the planet's elliptical orbit ) from the sun because of this simple rearrangement of the above terms: § The best method for determining the mass and surface acceleration of any solar system body: Deep Impact's July 4, 2005 encounter with comet 9P/Tempel 1. When the impactor separated and flew into Tempel 1, Deep Impact spacecraft was orbiting at about 10,000 km above Tempel 1's surface. Both Deep Impact spacecraft and Tempel 1 at time of impact was approximately 0.89 AU from Earth and 1.5 AU from the Sun, the comet's perihelion elliptical distance. Given today's Space Age technology, by far the best method for determining the mass of any solar system body such as an asteroid object, is by means of placing an artificial orbiting satellite into a near - perfect circular orbit of known radial distance to the object's center of mass and astronomically observing its period of revolution T about the object's body. Then by employing Kepler's 3rd Law ( Harmonic Law ) and knowing the artificial satellite's mass, , we get Relativity Science Calculator Since, this effectively yields And from instrument measurements onboard the artificial satellite as well as astronomical observations of the planet, it's possible to further determine the planet's radius, , and at the planet's surface any mass has weight W and acceleration g as follows § Determining the distance of the earth to the moon: In this calculation we basically only need to know what is the time period for the moon's rotational orbit from astronomical observation together with Euclid's geometry and apply the following Kepler's 3rd Law ( Harmonic Law ) as validated by Newton's Universal Law of Gravitational Attraction: Relativity Science Calculator § Determining mass of earth's moon: As was mentioned above, the very best way of determining the mass of any solar system body is by placing an orbiting artificial satellite around that object and measure its period and distance to the center of the body - e.g. the moon. However, in times past this was not feasible and so therefore other means such as utilizing Euclid's geometry of proportions gave some approximate answers. See Chapter: "Early Models of the Universe: Aristarchus of Samos [ circa 310 B.C. - 230 B.C. ]. (i). Nevertheless, here is the "quick and dirty" modern method: (ii). 2 - Body System Method: Relativity Science Calculator . Notice, again, that essentially all we need to know to determine the mass of the moon are the astronomically observed orbital moon period ( sidereal month ) and the earlier derived quantities, and earth mass, !! (iii). The accepted derived quantities for earth and moon therefore are (iv). Deriving the barycenter for earth - moon ( common center of mass for earth - moon ): Since this again involves a 2 - body system analysis, it's recommended that you first visit "The Two - Body Problem" chapter. Relativity Science Calculator Notice: the earth - moon barycenter is approximately 3/4 of earth's radius and resides 1/4 of the way inside earth's crust! § Determining the masses of near and distant disk galaxies: Amazingly, we still use Newton's and Kepler's Laws of motion! This is accomplished first by astronomical observations of the outer most "spiral tail" of disk galaxies to determine both the radial distance to the galactic center as well as the period of rotation about the galactic center for these tails. Of course, both in terms of distances and rotational periods these quantitative elements are neither easy to obtain nor are they anything within normal human experience. In fact, everything regarding cosmic expanses is totally behind normal human experience. But the further amazing thing is that these cosmic quantities and their related cosmic galaxies are not beyond human knowledge and understanding!! This in turn leads to applying Newton's Law of Gravitational Attraction and Kepler's 3rd ( Harmonic ) Law as we previously did in the following manner: The problem with determining the mass of our Milky Way ( The Galaxy; Latin: "Via Lactea" derived from Greek word "Kiklios Galaxios" which translates as "milky circle" ) is that we can't exactly ʼseeʻ our Milky Way tail since our platform for observation is Earth within our own solar system. Our solar system in turn is traversing a nearly circular orbit within the inner rim of the Orion Arm of The Galaxy at about 40 - 50% distance ( about 30,000 light - years ) away from the Galactic Center, at about 15 light - years above the plane of the Milky Way disk, with an approximate velocity of 220 - 234 kilometer per second, which is equivalent to one (1) light year in about 1,400 earth - years or one (1) AU every 8 earth days. The Sun, and hence the Earth, completes one "galactic year" in about 225 - 250 million earth - years and has made 27 round trips since its earliest formation. Nevertheless, Newton's and Kepler's Laws determine Milky Way galactic mass and with some extra luminosity observations we can further tweak the mathematics for Milky Way mass. Notwithstanding what amounts to a "galatic year" for earth's solar system, there is now a seminal study by the astrophysicists at the Cardiff Center for Astrobiology, Cardiff, Scotland, proposing that earth's solar system transits the plane of the Milky Way galaxy approximately every 35 - 40 million years with the consequent result of sending comet collisions into the earth itself on a regular 35 - 40 million year time scale. The meaning of this is that astrobiologists as well as earth scientists can now better understand the periodicity for crater occurrences on earth's surface as well earth's recurring mass extinctions, especially for the dinosaurs some 65 million years ago. source: http://www.world-science.net/othernews/080503_galaxy Relativity Science Calculator Milky Way Galaxy Artist's concept of the Milky Way galaxy, with the "galactic bar" visible in the center. (Image by R. Hurt) source: NASA Press Release by Bob Silberg/PlanetQuest, February 14, 2006 Still, from greater astronomical observations of near and distant galaxies we discern that spiral and disk tails are traveling at doppler - shifted velocities [ note: using hydrogen's 21 cm radiation line ] greater than can be justified by the observed amount of light emanating from these galactic masses. That is, the strength of gravitational attraction between masses of bodies within any galaxy will determine spiral tail or other disk velocities. Therefore since there is such a wide disconnect or disparity in so many galaxies as between observed velocities which otherwise would tear these galaxies apart and observed [ light illuminated ] total mass of bodies providing "galactic [ gravitational ] glue", hence logically there must exist within so many galaxies hidden or dark gravitational forces which in turn can only arise from hidden or "dark matter". Dark Matter Estimated distribution of dark matter and dark energy in the universe. source: NASA Press Release by Bob Silberg/PlanetQuest, February 14, 2006 Solar System Attributes Orbital Orbital Inclination Rotation Black-box Equatorial radius (AU) Orbital Name [a] [a] [a] to Sun's [a] Moons Rings Atmosphere [a] [a] Mass Gravity (semi-major period eccentricity period temperature diameter equator (°) axis) (sidereal) (sidereal) (K) Mercury 0.383 0.0553 0.378 0.38709893 0.241 7.00487 0.2056 58.785 — no vacuum 1.740 - Venus 0.949 0.815 0.905 0.72333199 0.615 3.39471 0.0067 [d] — no CO2, N2 0.911 Terrestrials 243.686 Earth[b] 1.00 1.00 1.00 1.00 1.00 7.25[c] 0.0167 1.00 1 no N2, O2 1.00 Mars 0.533 0.107 0.379 1.52366231 1.881 1.850 0.0935 1.029 2 no CO2, N2 0.826 Jupiter 11.209 317.83 2.530 5.20336301 11.862 1.304 0.0489 0.415 63 yes H2, He 0.433 Saturn 9.449 95.159 1.065 9.53707032 29.457 2.485 0.0565 0.445 56 yes H2, He 0.319 Gas giants Uranus 4.007 14.536 0.905 19.19126393 84.011 0.772 0.0457 -0.720[d] 27 yes H2, He 0.229 Neptune 3.883 17.147 1.14 30.06896348 164.79 1.769 0.0113 0.673 14 yes H2, He 0.183 Pluto 0.187 0.0021 0.059 39.48168677 247.68 11.880 0.2488 -6.405[d] 5 no N2, CH4 0.147 Dwarf planets Eris 0.19 0.0025 0.0816 67.6681 - 44.187 0.44177 > 8 h? 1 no temporary - Makemake 0.12 0.0008 0.0510 45.791 unknown 28.960 0.1590 unknown 0 no temporary - distance to Barycenter Sun 109.2[e] 333,000 28.0 - - - 25.449 - - H, He 17.3024 earth[f] a measured relative to the Earth.
Recommended publications
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • From Monitoring Survey of Variable Red Giant Stars to the Evolution of the Galaxy: Andromeda Vii
    Stars and their variability observed from space C. Neiner, W. W. Weiss, D. Baade, R. E. Griffin, C. C. Lovekin, A. F. J. Moffat (eds) FROM MONITORING SURVEY OF VARIABLE RED GIANT STARS TO THE EVOLUTION OF THE GALAXY: ANDROMEDA VII M. Navabi1, M. Noori2, E. Saremi1, A. Javadi1, J. van Loon3 and H. Khosroshahi1 Abstract. We have observed the Andromeda VII dwarf galaxy (And VII) using optical multi-epochs with the Isaac Newton Telescope (INT), in order to identify AGB stars. Among AGB stars, we concentrated on long-period variable stars (LPVs) with the largest amplitudes at optical wavelengths. Because these stars are cool at the end of their evolution and their luminosities reach maxima, their birth mass is directly related to luminosity by employing theoretical evolutionary tracks. Since the periods of LPVs are months to years, we have taken t10 epochs from And VII during the period 2015 − 2017, spaced by a month or more in the i- and V -bands, plus one epoch in the I-band, to find these variable stars. As a result, a catalogue of 10; 000 stars and 48 LPVs was identified within two halflight radii of And VII. The i−band amplitude of variability for our LPV stars ranged from 0:2{1:6 mag. We used the luminosity distribution of those stars to reconstruct their star formation history, employing a method that we have applied in the cases of other Local Group galaxies. By using as well the Spitzer catalogues at mid-IR wavelengths, we constructed a detailed map of the mass feedback into the interstellar medium (ISM).
    [Show full text]
  • History of Telescopes
    1 OUR PLACE IN SPACE Earth: Earth is the third planet from the Sun, and the densest and fifth- largest of the eight planets in the Solar System. It is also the largest of the Solar System’s four terrestrial planets. The Solar System : The Solar System consists of the Sun and those celestial objects bound to it by gravity, all of which were formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. Of the many objects that orbit the Sun, most of the mass is contained within eight relatively solitary planets whose orbits are almost circular and lie within a nearly flat disc called the ecliptic plane. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, the gas giants, are substantially more massive than the terrestrials. They are Jupiter, Saturn, Uranus and Neptune. The Sun: The Sun is the star at the center of the Solar System. It has a diameter of about 1,392,000 kilometers about 109 times that of Earth, and its mass (about 2 × 1030 kilograms, 330,000 times that of Earth) accounts for about 99.86% of the total mass of the Solar System. The Milky way Galaxy: The Milky Way Galaxy is the galaxy in which the Solar System is located. The Milky Way is a barred spiral galaxy that is part of the Local Group of galaxies. It is one of billions of galaxies in the observable universe. The Local Group: The Local Group is the group of galaxies that includes our galaxy, the Milky Way.
    [Show full text]
  • PDF Presentatie Van Frank
    13” Frank Hol / Skyheerlen Elfje en Vixen R150S Newton in de jaren ’80 en begin ’90 vooral zon, maan, planeten en Messiers. H.T.S. – vriendin – baan – huis kopen & verbouwen trouwen – kinderen waarneemstop. Vanaf 2006 weer actief waarnemen. Focus op objecten uit de Local Group of Galaxies • 2008: Celestron C14. • 2015: 13” aluminium reisdobson. • 2017-2018-2019: 13” aluminium bino-dobson. Rocherath – SQM 21.2-21.7 13” M31 NGC206 Globulars Stofbanden Stervormings- gebieden … 13” M31 M32 NGC206 Globulars Stofbanden Stervormings- gebieden … NGC206 13” NGC205 M32 M32 is de kern van een NGC 221 galaxy die grotendeels Andromeda opgelokt is door M31. M32 is dan ook net zo X helder als de kern van M31 (met 100 miljoen sterren). Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. De helderste dwerg (vanuit onze breedte) aan de hemel: magnitude 8.1. M110 “Een elliptisch stelsel is NGC 205 dood-saai.” Andromeda Neen, kijk eens hoe mooi het stelsel aan de rand in de X donkere achtergrond verdwijnt. Een watje in de lucht! Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. Een grotere telescoop laat de randen mooi verdwijnen in de omgeving. 30’ x 25’ Burnham’s NGC185 and NGC147 “These two miniature elliptical galaxies appear to be distant Celestial companians of the Great Andromeda Galaxy M31. They are Handbook some 7 degrees north of it in the sky, and are approximately the same distance from us, about 2.2 milion light years.” Start van een lange zoektocht (die nog niet voorbij is). 13” NGC147 Twee elliptische stelsels. & NGC147 is een stuk moeilijker dan NGC185.
    [Show full text]
  • Motions of Observable Structures Ruled by Hierarchical Two-Body Gravitation in the Universe
    Motions of observable structures ruled by hierarchical two-body gravitation in the universe Yongfeng Yang Bureau of Water Resources of Shandong Province, Jinan, Shandong Province, China, Mailing address: Shandong Water Resources Department, No. 127 Lishan Road, Jinan, Shandong Province, China, 250014 Tel. and fax: +86-531-8697-4362 E-mail: [email protected] Abstract Over the past various scenarios had been presented to account for the formation of the solar system and galaxy, but ever-increasing observations prove these conceptions to be incomplete. Here I propose, all objects in the universe are orderly organized in a series of hierarchical two-body systems with gravitation. Within these systems, the two components of each two-body system are orbiting around the barycenter of this system, and at the same time each two-body system is orbiting around the barycenter of a superior two-body system. Based on this hierarchical two-body model, an approximate uniform velocity feature for all stars (galaxies) in a galaxy (cluster) is determined. Under the effect of gravitation, a successive hierarchical orbital shrinkage results in high redshifts of distant galaxies and planar (disc) rotational profile of large-scale structures like the solar system and galaxy. “… if redshift are not primarily due to velocity shift … the velocity-distance relation is linear, the distribution of the nebula is uniform, there is no evidence of expansion, no trace of curvature, no restriction of the time scale … and we find ourselves in the presence of one of the principles of nature that is still unknown to us today … whereas, if redshifts are velocity shifts which measure the rate of expansion, the expanding models are definitely inconsistent with the observations that have been made … expanding models are a forced interpretation of the observational results .” E.
    [Show full text]
  • Build Your Own Light-Clock; and a Proper Look at Reciprocal Events and the Errors of Time Dilation
    Clive Tickner B.A. BSC; [email protected] A rethink of the Twin’s Paradox; build your own light-clock; and a proper look at reciprocal events and the errors of time dilation ABSTRACT In physics, the Twin's Paradox is a thought experiment in special relativity, involving identical twins, one of whom makes a journey into space in a high- speed rocket, to return home to find that the twin who remained on Earth has reached a greater age. Many explanations of this hypothesis have been offered since it was originally posited, (1911 Paul Langevin ) with almost as many rationalisations as there are physicists addressing the issue. As this conundrum relies upon the protagonists' impressions of events and how things appear to them, concerning the passage of time, I build a light-clock, diagnose reciprocity errors and offer new points of view and an unequivocal answer to the riddle. KEY WORDS Gravitational forces, Ladder in Barn Paradox, Twins' Paradox, speed of light, space-time diagrams, Einstein's train, Light-clock, simultaneity, reciprocity, time dilation, GPS, satellites. CONTENTS page 3; The Twins' Paradox as currently explained page 4; New Point of view; First example page 7; New Point of view; Second example page 10; Gravitational forces page 10; New Point of View; The Andromeda route page 12; Examples of vague claims page 13; The Flash of Light page 13; The travelling observer's understanding of the event page 15; The exterior observer's understanding of the event page 15; Simultaneity 1 page 18; The space-time graph fails (1) page 20; A Space-time diagram predetermines events page 22; Theoretical experiment in simultaneity.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Research Papers-Cosmology/Download/3358
    Motions of Observable Structures Ruled by Hierarchical Two-body Gravitation in the Universe Yongfeng Yang Bureau of Water Resources of Shandong Province No. 127 Lishan Road, Jinan, Shandong Province, 250014, CHINA e-mail: [email protected] Abstract: All objects in the universe are being organized into a series of hierarchical two-body systems with gravitation. Within these systems, the two components of a two-body system are orbiting around the barycentre of this system, and at the same time this system is orbiting around the barycentre of a superior two-body system. Since the foundations of Copernican heliocentric system, Kepler’s planetary motional laws, and Newton’s universal gravitation, it was widely believed that our understanding of the universe has reached a high-point. However, various evidence shows there still has a big step towards final fact. At least, the motions of both star and galaxy keep unclear, and the formations of different structures (satellite, planet, star, galaxy, cluster, etc.) have not been systematically considered. This paper is an update that was originally published in a proceeding of NPA (Natural Philosophical Alliance) in 2011. 1 Proposition Because of an unknown significant event, at a special time of t0, small visible matter (assumed to be ordinary particle) of number N and mass m were evenly distributed in a three-dimensional universe of total volume V (assumed to be V=XYZ, where X, Y, and Z is infinite) and temperature T0. The density of ordinary particle is thus written as ρ=Nm/V, and the room each particle occupies in the space is expressed as S=V/N.
    [Show full text]
  • The Galaxies of the Local Group Sidney Van Den Bergh Index More Information
    Cambridge University Press 978-0-521-03743-3 - The Galaxies of the Local Group Sidney van den Bergh Index More information Object Index 30 Doradus, 49, 88, 99, 100, 101, 108, 110, 112–116, DDO 155, 263 121, 124, 131, 134, 135, 139 DDO 187, 263, 279 47 Tucanae, see NGC 104 DDO 210, 5, 7, 194–195, 280, 288 287.5 + 22.5 + 240, 139, 161 DDO 216, 5, 6, 7, 174, 192–194, 280 AE And, 37 DDO 221, 174, 188–191, 280 AF And, see M31V19 DEM 71, 132 Alpha UMi, see Polaris DEM L316, 133 AM 1013-394A, 270, 272 Draco dwarf, 5, 58, 137, 185, 231, 249–252, 256, 259, And I, 5, 234, 235, 236, 237, 242, 280 262, 280 And II, 5, 7, 234, 236, 237, 238, 240, 242, 280 And III, 5, 234, 236, 237, 238, 240, 242, 280 EGB 0419 + 72, 270 And IV, 234 EGB 0427 + 63, see UGC-A92 And V, 5, 7, 237–240, 242, 280 Eridanus, 58, 64, 229 And VI, 5, 7, 240, 241, 242, 280 ESO 121-SC03, 103, 104, 124, 125, 161, 162 And VII, 5, 7, 241, 242, 280 ESO 249-010, 264 Andromeda galaxy, see M31 ESO 439-26, 55 Antlia dwarf, 265–267, 270, 272 Eta Carinae, 37 Aquarius dwarf, see DDO 210 AqrDIG, see DDO 210 F8D1, 2 Arches cluster, see G0.121+0.017 Fornax clusters 1–6, 222, 223, 224 Arp 2, 58, 64, 161, 226, 227, 228, 230, 232 Fornax dwarf 5, 94, 167, 219–226, 231, 256, 259, 260, Arp 220, 113 262, 280 B 327, 24 G 1, 27, 32, 34, 35, 45 BD +40◦ 147, 164 G 105, 35 BD +40◦ 148, 12 G 185, 31 Berkeley 17, 54 G 219, 27, 32 Berkeley 21, 56 G 280, 32 G0.7-0.0, see Sgr B2 C1,20 G0.121 + 0.017, 48 C 107, see vdB0 G1.1-0.1, 49 Camelopardalis dwarf, 241, 242 G359.87 + 0.18, 67 Carina dwarf, 5, 245–247, 256,
    [Show full text]
  • The Galaxies of the Local Group
    THE GALAXIES OF THE LOCAL GROUP SIDNEY VAN DEN BERGH CAMBRIDGE UNIVERSITY PRESS P1: GKW/UKS P2: GKW/UKS QC: GKW CB240-FM December 4, 1999 14:59 Char Count= 0 THE GALAXIES OF THE LOCAL GROUP i P1: GKW/UKS P2: GKW/UKS QC: GKW CB240-FM December 4, 1999 14:59 Char Count= 0 Cambridge astrophysics series Series editors Andrew King, Douglas Lin, Stephen Maran, Jim Pringle, and Martin Ward Titles available in this series 7. Spectroscopy of Astrophysical Plasmas by A. Dalgarno and D. Layzer 10. Quasar Astronomy by D. W. Weedman 17. Molecular Collisions in the Interstellar Medium by D. Flower 18. Plasma Loops in the Solar Corona by R. J. Bray, L. E. Cram, C. J. Durrant, and R. E. Loughhead 19. Beams and Jets in Astrophysics edited by P. A. Hughes 20. The Observation and Analysis of Stellar Photospheres by David F. Gray 21. Accretion Power in Astrophysics 2nd Edition by J. Frank, A. R. King, and D. J. Raine 22. Gamma-Ray Astronomy 2nd Edition by P. V. Ramana Murthy and A. W. Wolfendale 23. The Solar Transition Region by J. T. Mariska 24. Solar and Stellar Activity Cycles by Peter R. Wilson 25. 3K: The Cosmic Microwave Background Radiation by R. B. Partridge 26. X-Ray Binaries by Walter H. G. Lewin, Jan van Paradijs, and Edward P. J. van den Heuvel 27. RR Lyrae Stars by Horace A. Smith 28. Cataclysmic Variable Stars by Brian Warner 29. The Magellanic Clouds by Bengt E. Westerlund 30. Globular Cluster Systems by Keith M.
    [Show full text]
  • Ananda Bosman & Aton Vase Da®
    432 THOUSAND MAN-LIKE SPECIES; 432,000 HUMANOID RACES IN THE RG VEDIC MULTIVERSE copyright © 2008, by Ananda Bosman & Aton Vase Da® OVERVIEW The proto-Vedic and Vedic cultures that trace 11,000 years into antiquity (Mrghra) proclaimed to be a society based on ETI and Ultraterrestrial contact (Devas, Manu Saptarsi). Over 400,000 humanoid races and their various planetary worlds and societies are described in the Vedic texts that are procured and even scribed by such contacts. In this chapter we show that the Rg Veda’s genetic code, and Vedic Puranas neuroanatomical code, hyper-indexes earth mans genome and neuro-cybernetics intricately with the Rg Veda’s 432,000 Man- like species of our local universe. INTRODUCTORY NOTE “...As the Earth moves fully into a 4th dimensional frequency [hadronic horizon configuration] in consciousness, in the consciousness time zone of 2000 years (which is not as you count time, but is a level of consciousness) —it begins to merge with the other planetary systems and the consciousnesses [ETI, UTI, HTI etc.] that are exploring the other planetary systems. They begin to collapse into a harmonic resonance, where they indeed meet the future, and meet the past: the past and the future converge into the present…” —EMMANUEL (ultraterrestrial), April 6th 1990, Contact by Lake Geneva. PLEASE NOTE that our writing style is a kind of poetic semantic art, that is interdisciplinary, and does not represent any sectarian dogma, we encourage every one to conduct their own research, use their own creative cognition, and creative art, before arriving at any definite conclusions.
    [Show full text]