A Galaxisok Világa Tóth L

Total Page:16

File Type:pdf, Size:1020Kb

A Galaxisok Világa Tóth L A galaxisok világa Tóth L. Viktor XML to PDF by RenderX XEP XSL-FO F ormatter, visit us at http://www.renderx.com/ A galaxisok világa Tóth L. Viktor Szerzői jog © 2013 Eötvös Loránd Tudományegyetem E könyv kutatási és oktatási célokra szabadon használható. Bármilyen formában való sokszorosítása a jogtulajdonos írásos engedélyéhez kötött. Készült a TÁMOP-4.1.2.A/1-11/1-2011-0073 számú, „E-learning természettudományos tartalomfejlesztés az ELTE TTK-n” című projekt keretében. Konzorciumvezető: Eötvös Loránd Tudományegyetem, konzorciumi tagok: ELTE TTK Hallgatói Alapítvány, ITStudy Hungary Számítástechnikai Oktató- és Kutatóközpont Kft. XML to PDF by RenderX XEP XSL-FO F ormatter, visit us at http://www.renderx.com/ Tartalom Előszó ........................................................................................................................................ vii 1. Bevezetés .................................................................................................................................. 1 1.1 Ködök ............................................................................................................................. 1 1.2. Világmodellek – a Shapley-Curtis vita ................................................................................. 4 1.2.1. A Shapley-Curtis vita főbb kérdései: ......................................................................... 5 1.2.2. A Shapley-Curtis vita tudományos előzményei és háttere: ............................................. 5 Referenciák és további olvasnivaló az előszó és az 1. fejezet témájában: ........................................... 7 2. Távolságmérés és az extragalaxisok felfedezése ............................................................................. 10 2.1. Trigonometrikus parallaxis, a parszek definíciója .................................................................. 10 2.2. A fotometriai (radiometriai) parallaxis módszerekről ............................................................. 11 2.3. Távolságmérési módszerek fajtái és hatókörük ..................................................................... 12 2.4. Spektroszkópiai parallaxis ................................................................................................ 13 2.5. A Tully-Fisher reláció ..................................................................................................... 13 2.6. A Faber-Jackson reláció ................................................................................................... 15 2.6.1. A D-σ reláció ...................................................................................................... 16 2.7. Távolságmérés felületi fényesség fluktuációjából .................................................................. 17 2.8. Ia típusú szupernóvák és távolságmérés .............................................................................. 18 2.9. A cefeida parallaxis ........................................................................................................ 23 2.9.1. A periódus-luminozitás reláció ............................................................................... 23 2.9.2. A cefeidák használatának előnye a távolság meghatározásban ....................................... 27 2.9.3. A cefeida pulzáló változók fizikai leírásának alapjai ................................................... 27 2.9.4. A periódus-luminozitás reláció alkalmazása a gyakorlatban .......................................... 28 2.10. A P-L módszer néhány tudománytörténetben fontos alkalmazása ........................................... 30 2.10.1. Shapley – távoli gömbhalmazok ............................................................................ 30 2.10.2. Hubble – vannak extragalaxisok ............................................................................ 31 2.10.3. A Hubble állandó ............................................................................................... 32 2.10.4. Sandage és Tamman – a Hubble állandó korrekciója .................................................. 33 2.11. Távolság meghatározása a Hubble törvénnyel ..................................................................... 33 Referenciák és további olvasnivaló a fejezet témájában: ............................................................... 35 3. Alaktani osztályozás, Hubble séma. .............................................................................................. 39 3.1 Hubble-Sandage osztályozás .............................................................................................. 39 3.1.1. A Hubble-féle osztályok – „hangvilla” ..................................................................... 40 3.1.2. A Hubble-féle morfológiai osztályozás hiányosságai ................................................... 52 3.1.3. A Hubble-féle osztályozás finomításai ..................................................................... 53 3.1.4. A Hubble osztályozásba nem illeszthető galaxisok ...................................................... 61 3.2. A morfológiai osztályozási sémák összehasonlítása ............................................................... 62 3.3. Fizikai paraméterek és szerkezet kapcsolata ......................................................................... 62 Referenciák és további olvasnivaló a fejezet témájában: ............................................................... 63 4. Elliptikus galaxisok ................................................................................................................... 66 4.1 Óriás és közepes elliptikus galaxisok ................................................................................... 66 4.1.1. Az elliptikus galaxisok morfológiája ........................................................................ 67 4.1.2. Az elliptikus galaxisok sűrűségmodellje ................................................................... 71 4.1.3. Az elliptikus galaxisok kinematikája ........................................................................ 73 4.1.4. Az elliptikus galaxisok csillagtartalma ..................................................................... 74 4.1.5. Csillagközi anyag elliptikus galaxisokban ................................................................. 74 4.1.6. Fekete lyuk elliptikus galaxisok középpontjában ........................................................ 74 4.1.7. Az elliptikus galaxisok eloszlása ............................................................................. 75 4.2 Törpe elliptikus galaxisok ................................................................................................. 75 Referenciák és további olvasnivaló a fejezet témájában: ............................................................... 76 5. Spirálgalaxisok ......................................................................................................................... 77 5.1. A galaxisok fő összetevői ................................................................................................. 77 5.2. Spirálkar indikátorok ....................................................................................................... 77 5.2.1. A spirálkarok megjelenési formái ............................................................................ 77 5.2.2. OB asszociációk és HII zónák ................................................................................ 78 5.2.3. Óriás molekulafelhők és HI szuperfelhők .................................................................. 78 iii XML to PDF by RenderX XEP XSL-FO F ormatter, visit us at http://www.renderx.com/ A galaxisok világa 5.3. Spirálgalaxisok alrendszerei ............................................................................................. 79 5.3.1. Korong .............................................................................................................. 80 5.3.2. Dudor – bulge ..................................................................................................... 82 5.3.3. Barionos, vagy csillagos halo ................................................................................. 84 5.3.4. Sötétanyag halo ................................................................................................... 85 5.4. Csillagközi anyag ........................................................................................................... 85 5.5. Forgás és rotációs görbe ................................................................................................... 89 5.5.1. Nyírási és forgási együtthatók, nyírási ráta ................................................................ 89 5.5.2. A rotációs görbe .................................................................................................. 89 5.6. A korong stabilitása ........................................................................................................ 89 5.7. Csillagkeletkezés ............................................................................................................ 91 5.7.1. A Schmidt-törvény ............................................................................................... 91 5.7.2. Spirálkarok és csillagkeletkezés .............................................................................. 92 Referenciák és további olvasnivaló a fejezet témájában: ............................................................... 94 6. Anomális galaxisok: kompakt és irreguláris rendszerek .................................................................... 96 6.1. Kék kompakt galaxisok
Recommended publications
  • The Global Jet Structure of the Archetypical Quasar 3C 273
    galaxies Article The Global Jet Structure of the Archetypical Quasar 3C 273 Kazunori Akiyama 1,2,3,*, Keiichi Asada 4, Vincent L. Fish 2 ID , Masanori Nakamura 4, Kazuhiro Hada 3 ID , Hiroshi Nagai 3 and Colin J. Lonsdale 2 1 National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA 2 Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Rd, Westford, MA 01886, USA; vfi[email protected] (V.L.F.); [email protected] (C.J.L.) 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; [email protected] (K.H.); [email protected] (H.N.) 4 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan; [email protected] (K.A.); [email protected] (M.N.) * Correspondence: [email protected] Received: 16 September 2017; Accepted: 8 January 2018; Published: 24 January 2018 Abstract: A key question in the formation of the relativistic jets in active galactic nuclei (AGNs) is the collimation process of their energetic plasma flow launched from the central supermassive black hole (SMBH). Recent observations of nearby low-luminosity radio galaxies exhibit a clear picture of parabolic collimation inside the Bondi accretion radius. On the other hand, little is known of the observational properties of jet collimation in more luminous quasars, where the accretion flow may be significantly different due to much higher accretion rates. In this paper, we present preliminary results of multi-frequency observations of the archetypal quasar 3C 273 with the Very Long Baseline Array (VLBA) at 1.4, 15, and 43 GHz, and Multi-Element Radio Linked Interferometer Network (MERLIN) at 1.6 GHz.
    [Show full text]
  • Ocabulary of Definitions : P
    Service bibliothèque Catalogue historique de la bibliothèque de l’Observatoire de Nice Source : Monographie de l’Observatoire de Nice / Charles Garnier, 1892. Marc Heller © Observatoire de la Côte d’Azur Février 2012 Présentation << On trouve… à l’Ouest … la bibliothèque avec ses six mille deux cents volumes et ses trentes journaux ou recueils périodiques…. >> (Façade principale de la Bibliothèque / Phot. attribuée à Michaud A. – 188? - Marc Heller © Observatoire de la Côte d’Azur) C’est en ces termes qu’Henri Joseph Anastase Perrotin décrivait la bibliothèque de l’Observatoire de Nice en 1899 dans l’introduction du tome 1 des Annales de l’Observatoire de Nice 1. Un catalogue des revues et ouvrages 2 classé par ordre alphabétique d’auteurs et de lieux décrivait le fonds historique de la bibliothèque. 1 Introduction, Annales de l’Observatoire de Nice publiés sous les auspices du Bureau des longitudes par M. Perrotin. Paris,Gauthier-Villars,1899, Tome 1,p. XIV 2 Catalogue de la bibliothèque, Annales de l’Observatoire de Nice publiés sous les auspices du Bureau des longitudes par M. Perrotin. Paris,Gauthier-Villars,1899, Tome 1,p. 1 Le présent document est une version remaniée, complétée et enrichie de ce catalogue. (Bibliothèque, vue de l’intérieur par le photogr. Jean Giletta, 191?. - Marc Heller © Observatoire de la Côte d’Azur) Chaque référence est reproduite à l’identique. Elle est complétée par une notice bibliographique et éventuellement par un lien électronique sur la version numérisée. Les titres et documents non encore identifiés sont signalés en italique. Un index des auteurs et des titres de revues termine le document.
    [Show full text]
  • ASTR 503 – Galactic Astronomy Spring 2015 COURSE SYLLABUS
    ASTR 503 – Galactic Astronomy Spring 2015 COURSE SYLLABUS WHO I AM Instructor: Dr. Kurtis A. Williams Office Location: Science 145 Office Phone: 903-886-5516 Office Fax: 903-886-5480 Office Hours: TBA University Email Address: [email protected] Course Location and Time: Science 122, TR 11:00-12:15 WHAT THIS COURSE IS ABOUT Course Description: Observations of galaxies provide much of the key evidence supporting the current paradigms of cosmology, from the Big Bang through formation of large-scale structure and the evolution of stellar environments over cosmological history. In this course, we will explore the phenomenology of galaxies, primarily through observational support of underlying astrophysical theory. Student Learning Outcomes: 1. You will calculate properties of galaxies and stellar systems given quantitative observations, and vice-versa. 2. You will be able to categorize galactic systems and their components. 3. You will be able to interpret observations of galaxies within a framework of galactic and stellar evolution. 4. You will prepare written and oral summaries of both current and fundamental peer- reviewed articles on galactic astronomy for your peers. WHAT YOU ABSOLUTELY NEED Materials – Textbooks, Software and Additional Reading: Required: • Galactic Astronomy, Binney & Merrifield 1998 (Princeton University Press: Princeton) • Access to a desktop or laptop computer on which you can install software, read PDF files, compile code, and access the internet. Recommended: • Allen’s Astrophysical Quantities, 4th Edition, Arthur Cox, 2000 (Springer) Course Prerequisites: Advanced undergraduate classical dynamics (equivalent of Phys 411) or Phys 511. HOW THE COURSE WILL WORK Instructional Methods / Activities / Assessments Assigned Readings There is far too much material in the text for us to cover every single topic in class.
    [Show full text]
  • Thesis University of Western Australia
    Kinematic and Environmental Regulation of Atomic Gas in Galaxies Jie Li March 2019 Master Thesis University of Western Australia Supervisors: Dr. Danail Obreschkow Dr. Claudia Lagos Dr. Charlotte Welker 20/05/2019 Acknowledgments I would like to thank my supervisors Danail Obreschkow, Claudia Lagos and Charlotte Welker for their guidance and support during this project, Luca Cortese, Robert Dˇzudˇzar and Garima Chauhan for their useful suggestions, my parents for giving me financial support and love, and ICRAR for o↵ering an open and friendly environments. Abstract Recent studies of neutral atomic hydrogen (H i) in nearby galaxies find that all isolated star-forming disk-dominated galaxies, from low-mass dwarfs to massive spirals systems, are H i saturated, in that they carry roughly (within a factor 1.5) as much H i fraction as permitted before this gas becomes gravitationally unstable. By taking this H i saturation for granted, the atomic gas fraction fatm of galactic disks can be predicted as a function of a stability parameter q j/M,whereM and j are the baryonic mass and specific / angular momentum of the disk (Obreschkow et al., 2016). The (logarithmic) di↵erence ∆fq between this predictor and the observed atomic fraction can thus be seen as a physically motivated way of defining a ‘H i deficiency’. While isolated disk galaxies have ∆f 0, q ⇡ objects subject to environmental removal/suppression of H i are expected to have ∆fq > 0. Within this framework, we revisit the H i deficiencies of satellite galaxies in the Virgo cluster (from the VIVA sample), as well as in clusters of the EAGLE simulation.
    [Show full text]
  • Star Maps: Where Are the Black Holes?
    BLACK HOLE FAQ’s 1. What is a black hole? A black hole is a region of space that has so much mass concentrated in it that there is no way for a nearby object to escape its gravitational pull. There are three kinds of black hole that we have strong evidence for: a. Stellar-mass black holes are the remaining cores of massive stars after they die in a supernova explosion. b. Mid-mass black hole in the centers of dense star clusters Credit : ESA, NASA, and F. Mirabel c. Supermassive black hole are found in the centers of many (and maybe all) galaxies. 2. Can a black hole appear anywhere? No, you need an amount of matter more than 3 times the mass of the Sun before it can collapse to create a black hole. 3. If a star dies, does it always turn into a black hole? No, smaller stars like our Sun end their lives as dense hot stars called white dwarfs. Much more massive stars end their lives in a supernova explosion. The remaining cores of only the most massive stars will form black holes. 4. Will black holes suck up all the matter in the universe? No. A black hole has a very small region around it from which you can't escape, called the “event horizon”. If you (or other matter) cross the horizon, you will be pulled in. But as long as you stay outside of the horizon, you can avoid getting pulled in if you are orbiting fast enough. 5. What happens when a spaceship you are riding in falls into a black hole? Your spaceship, along with you, would be squeezed and stretched until it was torn completely apart as it approached the center of the black hole.
    [Show full text]
  • PHYS 1302 Intro to Stellar & Galactic Astronomy
    PHYS 1302: Introduction to Stellar and Galactic Astronomy University of Houston-Downtown Course Prefix, Number, and Title: PHYS 1302: Introduction to Stellar and Galactic Astronomy Credits/Lecture/Lab Hours: 3/2/2 Foundational Component Area: Life and Physical Sciences Prerequisites: Credit or enrollment in MATH 1301 or MATH 1310 Co-requisites: None Course Description: An integrated lecture/laboratory course for non-science majors. This course surveys stellar and galactic systems, the evolution and properties of stars, galaxies, clusters of galaxies, the properties of interstellar matter, cosmology and the effort to find extraterrestrial life. Competing theories that address recent discoveries are discussed. The role of technology in space sciences, the spin-offs and implications of such are presented. Visual observations and laboratory exercises illustrating various techniques in astronomy are integrated into the course. Recent results obtained by NASA and other agencies are introduced. Up to three evening observing sessions are required for this course, one of which will take place off-campus at George Observatory at Brazos Bend State Park. TCCNS Number: N/A Demonstration of Core Objectives within the Course: Assigned Core Learning Outcome Instructional strategy or content Method by which students’ Objective Students will be able to: used to achieve the outcome mastery of this outcome will be evaluated Critical Thinking Utilize scientific Star Property Correlations – They will be instructed to processes to identify students will form and test prioritize these properties in Empirical & questions pertaining to hypotheses to explain the terms of their relevance in Quantitative natural phenomena. correlation between a number of deciding between competing Reasoning properties seen in stars.
    [Show full text]
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • An Outline of Stellar Astrophysics with Problems and Solutions
    An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening ..................................
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond
    Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pas.2018.xxx. Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond E. Egami1, S. Gallerani2, R. Schneider3, A. Pallottini2,4,5,6, L. Vallini7, E. Sobacchi2, A. Ferrara2, S. Bianchi8, M. Bocchio8, S. Marassi9, L. Armus10, L. Spinoglio11, A. W. Blain12, M. Bradford13, D. L. Clements14, H. Dannerbauer15,16, J. A. Fernández-Ontiveros11,15,16, E. González-Alfonso17, M. J. Griffin18, C. Gruppioni19, H. Kaneda20, K. Kohno21, S. C. Madden22, H. Matsuhara23, P. Najarro24, T. Nakagawa23, S. Oliver25, K. Omukai26, T. Onaka27, C. Pearson28, I. Perez- Fournon15,16, P. G. Pérez-González29, D. Schaerer30, D. Scott31, S. Serjeant32, J. D. Smith33, F. F. S. van der Tak34,35, T. Wada24, and H. Yajima36 1Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA 2Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy 3Dipartimento di Fisica “G. Marconi”, Sapienza Universitá di Roma, P.le A. Moro 2, 00185 Roma, Italy 4Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 5Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK 6Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, Roma, 00184, Italy 7Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands 8INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 9INAF, Osservatorio
    [Show full text]
  • The Recent and Continuing Assembly of Field Ellipticals by Red Mergers Pieter G
    ACCEPTED FOR PUBLICATION IN THE ASTRONOMICAL JOURNAL (DECEMBER 2005 ISSUE) Preprint typeset using LATEX style emulateapj v. 11/12/01 THE RECENT AND CONTINUING ASSEMBLY OF FIELD ELLIPTICALS BY RED MERGERS PIETER G. VAN DOKKUM Department of Astronomy, Yale University, New Haven, CT 06520-8101; [email protected] Accepted for publication in the Astronomical Journal (December 2005 issue) ABSTRACT We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 degree2 Multiwavelength Survey by Yale-Chile (MUSYC) and the 9.3 degree2 NOAO Deep Wide-Field Survey. In the full sample 67 galaxies (53 %) show morphological signatures of tidal interactions, consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies the fraction of tidally disturbed galaxies rises to 71 %, which implies that for every “normal” undisturbed elliptical there are two which show clear signs of interactions. The tidal features are red and smooth, and often extend over 50 kpc. Of the tidally distorted galaxies about 2 ¡ 3 are remnants and 1 ¡ 3 are interacting with a companion galaxy. The companions are usually bright red galaxies as well: the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope £ ¢ of the color-magnitude relation is ¢ 0 02 in B R. If the ongoing mergers are representative for the progenitors of the remnants ¤ 35 % of bulge-dominated galaxies experienced a merger with mass ratio 1 : 4 in the recent past.
    [Show full text]
  • NGC 6872 in the Constellation of Pavo 23 September 2014
    Image: NGC 6872 in the constellation of Pavo 23 September 2014 of free hydrogen, which is the basis material for new stars, meaning that if it weren't for its interactions with IC 4970, NGC 6872 might not have been able to produce new bursts of star formation. Provided by NASA Credit: ESA/Hubble & NASA / Acknowledgement: Judy Schmidt This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth. From tip to tip, NGC 6872 measures over 500,000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100,000 and 120,000 light-years across, making NGC 6872 about five times its size. The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm—although here, recent means 130 million years ago! Astronomers have noted that NGC 6872 seems to be relatively sparse in terms 1 / 2 APA citation: Image: NGC 6872 in the constellation of Pavo (2014, September 23) retrieved 23 September 2021 from https://phys.org/news/2014-09-image-ngc-constellation-pavo.html This document is subject to copyright.
    [Show full text]