Galaxies on Parade! Hubble Types

Total Page:16

File Type:pdf, Size:1020Kb

Galaxies on Parade! Hubble Types Galaxies on Parade! Hubble Types Edwin Hubble, American astronomer extraordinaire, is responsible for much of modern astronomy, including his distance/redshift relationship (called the Hubble Law). He also developed the classification system for galaxies used today. Hubble’s system identifies four types of galaxies based on their shapes and numerous subtypes based on the galaxy’s deviation from that standard shape. Elliptical Galaxies M32 M87 M60 Centaurus A Elliptical Galaxies are, well, elliptical in shape. •About 1/3 of known galaxies •Range from 6000-300,000 ly in diameter; from 106-1013 solar masses •Smaller ones (dwarf ellipticals; eg. the Sagittarius Dwarf, a satellite of the MW discovered in 1994) are more common •Subtypes range from very spherical (called E0) to elongated (E7). Note the lack of blue in these galaxies. What does that imply? Spiral Galaxies M31 (Andromeda)* M51 (Whirlpool) M104 (the Sombrero) Spiral (S) galaxies come in 3 flavors: •Sa - tightly wrapped arms •Sb - less tightly wrapped (Andromeda) •Sc - loosely wrapped arms (M51) •All are characterized by dust lanes separating bluish arms containing young stars. •Bright •Commonly found •Rotate •Span 80,000-250,000 ly in diameter and contain 109-1012 solar masses Barred Spirals •The “bar” refers to a line of stars/dust/gas in the middle instead of a nice, round nuclear bulge. • These are designated like spirals, but with a B: SBa, SBb, SBc. M91 •The a, b, and c refer to increasing openness of the arms (M91 = SBb, M83 = SABc (SA = intermediate between barred and spiral) M95 M83 Irregular (Irr) Irregular galaxies are just that. LMC M82 –the only irregular Messier Object. Peculiar and Starburst Galaxies Hey! It’s M82 again! Isn’t it irregular? Yes, but its irregularity is due to gas shooting out of its center. This may be due to a large mass of stars forming at the same time near galactic center, hence the term “starburst”. At the right you see a group called “Stephen’s Quintet”. These galaxies have altered their shapes through gravitational interaction with each other. Their shapes are not irregular, but they also don’t fit the other categories. Hence the term “peculiar”. Halton Arp cataloged peculiar galaxies, so many of these are called Arp objects. The Hubble Tuning Fork Diagram Hubble created a diagram to represent how the galaxy types SEEM to be related. Some may be, but there is no evidence to support an evolution of sorts from E to S. Repeat: this does not show any relationships between galaxies, just a pictorial representation of the (Stolen from SDSS) different types. Interactions Galaxies interact gravitationally, with long-lasting consequences: Here is Stephen’s Quintet again, showing X- rays (blue) produced by gas being accelerated between the galaxies. plume The “tadpole” galaxy. The long tail is the result of the tiny bright blue object at the upper left corner of the disk having swept through the larger spiral. The tiny galaxy at the bottom right is losing stars to the tadpole, as shown by the plume coming from the smaller satellite. Measurements show these two galaxies are the same distance from the earth. Ring Galaxies Ring galaxies are the result of collisions between two galaxies. NGC4560A, a polar ring galaxy: two perpendicular rings. This is rare. Hoag’s object (above) and the Cartwheel Galaxy (right) are both the result of a small galaxy passing through a big one. Active Galactic Nuclei AGNs are seemingly normal galaxies whose cores hide very bright radio sources: Centaurus A (optical) Centaurus A (radio) How does that work? Centers of AGNs are often thought to contain black holes. The radio signals are polarized, which suggests synchrotron radiation. Other types of AGNs include Seyfert Galaxies and Quasars. Galaxy Arrangement •The Local Group: Andromeda (M31), MWG, M33 (spiral in Triangulum). •95% of local group’s mass in these 3. •What else? Well…Sagittarius Dwarf, LMC, SMC, the recently discovered and widely disrupted Canis Major Dwarf, and the dwarf galaxies in Ursa Minor, Draco, Carina, Sextans (dwarf), Sculptor, Fornax, Leo I, Leo II, and perhaps the Phoenix Dwarf, and Leo A – all satellites of MWG. •Then M31 has satellites, too: M32 and M110 as well as fainter and more far-out NGCs 147 and 185, the very faint systems And I, And II, And III and possibly And IV, And V, And VI (Pegasus dwarf), And VII (Cassiopeia dwarf), and And VIII. •M33 isn’t alone either. Only one galaxy, GR8, seems not to be a satellite. Other Groups: the Maffei 1 group, which besides the giant elliptical galaxy Maffei 1 also contains smaller Maffei 2, and is associated with nearby IC 342 and a number of smaller galaxies. Highly obscurred by dark dust near the Milky Way's equatorial plane. the Sculptor Group or South Polar Group (with members situated around the South Galactic pole), dominated by NGC 253 the M81 group the M83 group Clusters •Smaller galaxies formed first and then combined to form larger spirals like the MWG. •As galaxies interact, their sizes change •Dynamic friction: when a star (or small galaxy) passes through a galaxy it is slowed down by gravitational interactions and its kinetic energy is transferred to the gas of the larger galaxy, heating it up and expanding it. This is the process by which one galaxy “eats” another one. •It is thought that MWG and Andromeda will collide (they are moving toward each other). The result would be a giant elliptical galaxy. •Size: local group is about 3 Mly in diameter The Virgo Cluster (one part, at least) •About 50 Mly away •Contains 16 Messier galaxies and a total of 200 galaxies altogether. •Local group is an outlying part but moving toward the cluster •Too massive to avoid, our group will eventually merge with it Other Clusters The Coma cluster, as seen from Hubble. Nearly every object is a galaxy. Other clusters… Types of Clusters The Coma cluster is regular, meaning it has a concentrated central core and a spherical shape. Clusters are usually hot X- ray sources. Gas in between the galaxies is heated strongly. The Virgo Cluster is irregular. (Virgo in X-ray) Large-Scale Structure A slice of the sky. Galaxies are plotted as white dots. Large scale structures include •Superclusters (tens of clusters arranged in chains. Virgo Supercluster is poor, about 15 Mpc in diameter) •Filaments •Voids •Sheets •The Great Wall •The Great Attractor? Map is from the CfA Redshift Survey.
Recommended publications
  • Flat Rotation Curves and Low Velocity Dispersions in KMOS Star-Forming Galaxies at Z ∼ 1? E
    A&A 594, A77 (2016) Astronomy DOI: 10.1051/0004-6361/201628315 & c ESO 2016 Astrophysics Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ∼ 1? E. M. Di Teodoro1; 2, F. Fraternali1; 3, and S. H. Miller4 1 Department of Physics and Astronomy, University of Bologna, 6/2 Viale Berti Pichat, 40127 Bologna, Italy 2 Research School of Astronomy and Astrophysics – The Australian National University, Canberra, ACT, 2611, Australia e-mail: [email protected] 3 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands 4 University of California – Irvine, Irvine, CA 92697, USA Received 15 February 2016 / Accepted 18 July 2016 ABSTRACT The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z ∼ 1; observed in the Hα emission line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3DBarolo, which models the galaxy emission directly in 3D observational space, without the need to extract kinematic maps. This major advantage of this technique is that it is not affected by beam smearing and thus it enables the determination of rotation velocity and intrinsic velocity dispersion, even at low spatial resolution. We find that (1) the rotation curves of these z ∼ 1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and (2) the Hα velocity dispersions are low, ranging from 15 to 40 km s−1, which leads to V/σ = 3–10.
    [Show full text]
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • Galactic-Scale Macro-Engineering: Looking for Signs of Other Intelligent Species, As an Exercise in Hope for Our Own
    Galactic-scale macro-engineering: Looking for signs of other intelligent species, as an exercise in hope for our own * Joseph Voros Senior Lecturer in Strategic Foresight Faculty of Business & Law, Swinburne University of Technology, Melbourne, Australia Abstract If we consider Big History as simply ‘our’ example of the process of cosmic evolution playing out, then we can seek to broaden our view of our possible fate as a species by asking questions about what paths or trajectories other species’ own versions of Big History might take or have taken. This paper explores the broad outlines of possible scenarios for the evolution of long-lived intelligent engineering species—scenarios which might have been part of another species’ own Big History story, or which may yet lie ahead in our own distant future. A sufficiently long-lived engineering-oriented species may decide to undertake a program of macro-engineering projects that might eventually lead to a re-engineered galaxy so altered that its artificiality may be detectable from Earth. We consider activities that lead ultimately to a galactic structure consisting of a central inner core surrounded by a more distant ring of stars separated by a relatively sparser ‘gap’, where star systems and stellar materials may have been removed, ‘lifted’ or turned into Dyson Spheres. When one looks to the sky, one finds that such galaxies do indeed exist—including the beautiful ringed galaxy known as ‘Hoag’s Object’ (PGC 54559) in the constellation Serpens. This leads us to pose the question: Is Hoag’s Object an example of galaxy-scale macro-engineering? And this suggests a program of possible observational activities and theoretical explorations, several of which are presented here, that could be carried out in order to begin to investigate this beguiling question.
    [Show full text]
  • Broad-Band Photometry and Long-Slit Spectroscopy of the Peculiar Ring Galaxy FM 287-14
    A&A 559, A8 (2013) Astronomy DOI: 10.1051/0004-6361/201219721 & c ESO 2013 Astrophysics Broad-band photometry and long-slit spectroscopy of the peculiar ring galaxy FM 287-14 M. Faúndez-Abans1, P. C. da Rocha-Poppe2,3, V. A. Fernandes-Martin2,3, M. de Oliveira-Abans1,5, I. F. Fernandes2,3,E.Wenderoth4, and A. Rodríguez-Ardila1 1 MCTI/Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, CEP 37504-364 Itajubá, MG, Brazil e-mail: [max;mabans;aardila]@lna.br 2 UEFS, Departamento de Física, Av. Transnordenstina, S/N, Novo Horizonte, CEP 44036-900 Feira de Santana, BA, Brazil 3 UEFS, Observatório Astronômico Antares, Rua da Barra, 925, Jardim Cruzeiro, CEP 44015-430 Feira de Santana, BA, Brazil e-mail: [paulopoppe;vmartin][email protected]; [email protected] 4 Gemini Observatory, Southern Operations Center, c/o AURA, 603 Casilla, La Serena, Chile e-mail: [email protected] 5 UNIFEI, Instituto de Engenharia de Produção e Gestão, Av. BPS, 1303, Pinheirinho, CEP 37500-903 Itajubá, MG, Brazil Received 30 May 2013 / Accepted 21 August 2013 ABSTRACT Aims. We report detailed morphological and kinematical insights into the disturbed galaxy FM 287-14, which is reported in the literature as a member of strongly interacting galaxies with a clear case of mergers. The main purpose of this paper is to provide a first observational study of this double-nuclei object based on photometry and spectroscopy. Methods. The study is based on BVR photometry with the 1.6-m telescope at OPD, and long-slit spectroscopy with Gemini South’s GMOS spectrograph, with two-gratings centered at 5 011 Å and 6 765 Å.
    [Show full text]
  • Spiral Galaxies, Elliptical Galaxies, Irregular Galaxies, Dwarf Galaxies, Peculiar/Interacting Galalxies Spiral Galaxies
    Lecture 33: Announcements 1) Pick up graded hwk 5. Good job: Jessica, Jessica, and Elizabeth for a 100% score on hwk 5 and the other 25% of the class with an A. 2) Article and homework 7 were posted on class website on Monday (Apr 18) . Due on Mon Apr 25. 3) Reading Assignment for Quiz Wed Apr 27 Ch 23, Cosmic Perspectives: The Beginning of Time 4) Exam moved to Wed May 4 Lecture 33: Galaxy Formation and Evolution Several topics for galaxy evolution have already been covered in Lectures 2, 3, 4,14,15,16. you should refer to your in-class notes for these topics which include: - Types of galaxies (barred spiral, unbarred spirals, ellipticals, irregulars) - The Local Group of Galaxies, The Virgo and Coma Cluster of galaxies - How images of distant galaxies allow us to look back in time - The Hubble Ultra Deep Field (HUDF) - The Doppler blueshift (Lectures 15-16) - Tracing stars, dust, gas via observations at different wavelengths (Lecture15-16). In next lectures, we will cover - Galaxy Classification. The Hubble Sequence - Mapping the Distance of Galaxies - Mapping the Visible Constituents of Galaxies: Stars, Gas, Dust - Understanding Galaxy Formation and Evolution - Galaxy Interactions: Nearby Galaxies, the Milky Way, Distant Galaxies - Mapping the Dark Matter in Galaxies and in the Universe - The Big Bang - Fates of our Universe and Dark Energy Galaxy Classification Galaxy: Collection of few times (108 to 1012) stars orbiting a common center and bound by gravity. Made of gas, stars, dust, dark matter. There are many types of galaxies and they can be classfiied according to different criteria.
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • Star Formation in Ring Galaxies Susan C
    East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2016 Star Formation in Ring Galaxies Susan C. Olmsted East Tennessee State Universtiy Follow this and additional works at: https://dc.etsu.edu/honors Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Olmsted, Susan C., "Star Formation in Ring Galaxies" (2016). Undergraduate Honors Theses. Paper 322. https://dc.etsu.edu/honors/ 322 This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Star Formation in Ring Galaxies Susan Olmsted Honors Thesis May 5, 2016 Student: Susan Olmsted: ______________________________________ Mentor: Dr. Beverly Smith: ____________________________________ Reader 1: Dr. Mark Giroux: ____________________________________ Reader 2: Dr. Michele Joyner: __________________________________ 1 Abstract: Ring galaxies are specific types of interacting galaxies in which a smaller galaxy has passed through the center of the disk of another larger galaxy. The intrusion of the smaller galaxy causes the structure of the larger galaxy to compress as the smaller galaxy falls through, and to recoil back after the smaller galaxy passes through, hence the ring-like shape. In our research, we studied the star-forming regions of a sample of ring galaxies and compared to those of other interacting galaxies and normal galaxies. Using UV, optical, and IR archived images in twelve wavelengths from three telescopes, we analyzed samples of star-forming regions in ring and normal spiral galaxies using photometry.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • A “Smashing” Polar-Ring Galaxy
    A “Smashing” Polar-ring Galaxy Image Credit: Gemini Observatory/AURA Gemini Observatory Legacy Image Gemini Observatory Facts The Gemini Observatory is operated A “Smashing” Polar-ring Galaxy by the Association of Universities for PRIMARY MIRRORS: Research in Astronomy, Inc., under a cooperative agreement with the This Gemini North telescope image captures the “bloody” Diameter: 8.1 meters; 26.57 feet; 318.84 inches National Science Foundation on behalf of the Gemini Partnership. aftermath of one galaxy piercing the heart of another. All Mass: 22.22 metric tonnes; 24.5 U.S. tons the action appears in a single frame, with the stunning Composition: Corning Ultra-Low Expansion (ULE) Glass Surface Accuracy: 15.6 nm RMS (between 1/1000 - 1/10,000 polar-ring galaxy NGC 660 as the focus of attention. thickness of human hair) NGC 660 spans some 40,000 light years across and lies TELESCOPE STRUCTURES: United States about 40 million light years distant in the direction of Height: 21.7 meters; 71.2 feet; 7 stories (from “Observing Floor”) the constellation of Pisces. It has an unusually high Weight: 380 metric tonnes; 419 U.S. tons gas content and resolves into hundreds of objects, a Optomechanical Design: Cassegrain ; Alt-azimuth Canada considerable fraction of which are blue and red supergiant DOMES: stars. The ring’s youngest detected stars formed only Height: 46 meters; 151 feet; 15 stories (from ground) about seven million years ago, indicating a long and Weight: 780 metric tonnes; 860 U.S. tons (moving mass) Rotation: 360 degrees in 2 minutes ongoing process of formation.
    [Show full text]
  • The X-Ray Luminosity Function of Ultra Luminous X-Ray Sources in Collisional Ring Galaxies
    Draft version June 8, 2018 Typeset using LATEX twocolumn style in AASTeX62 The X-Ray Luminosity Function of Ultra Luminous X-Ray Sources in Collisional Ring Galaxies Anna Wolter,1 Antonella Fruscione,2 and Michela Mapelli3 1INAF-Osservatorio Astronomico di Brera, via Brera 28, 20121 Milano, Italy 2Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambdidge, MA, 02138 3INAF-Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122, Padova, Italy (Received March, 7th, 2018; Accepted June, 5th, 2018) Submitted to The Astrophysical Journal ABSTRACT Ring galaxies are fascinating laboratories: a catastrophic impact between two galaxies (one not much smaller than the other) has produced fireworks especially in the larger one, when hit roughly perpendicularly to the plane. We analyze the point sources, produced by the starburst episode following the impact, in the rings of seven galaxies and determine their X-ray luminosity function (XLF). In 39 −1 total we detect 63 sources, of which 50 have luminosity LX ≥ 10 erg s , classifying them as ultra luminous X-ray sources (ULXs). We find that the total XLF is not significantly different from XLFs derived for other kinds of galaxies, with a tendency of having a larger fraction of high X-ray luminosity objects. Both the total number of ULXs and the number of ULXs per unit star formation rate are found in the upper envelope of the more normal galaxies distribution. Further analysis would be needed to address the issue of the nature of the compact component in the binary system. Keywords: galaxies: individual (AM0644-741, Arp143, Arp148) - galaxies: peculiar - galaxies: star formation - X-ray binaries 1.
    [Show full text]
  • From Monitoring Survey of Variable Red Giant Stars to the Evolution of the Galaxy: Andromeda Vii
    Stars and their variability observed from space C. Neiner, W. W. Weiss, D. Baade, R. E. Griffin, C. C. Lovekin, A. F. J. Moffat (eds) FROM MONITORING SURVEY OF VARIABLE RED GIANT STARS TO THE EVOLUTION OF THE GALAXY: ANDROMEDA VII M. Navabi1, M. Noori2, E. Saremi1, A. Javadi1, J. van Loon3 and H. Khosroshahi1 Abstract. We have observed the Andromeda VII dwarf galaxy (And VII) using optical multi-epochs with the Isaac Newton Telescope (INT), in order to identify AGB stars. Among AGB stars, we concentrated on long-period variable stars (LPVs) with the largest amplitudes at optical wavelengths. Because these stars are cool at the end of their evolution and their luminosities reach maxima, their birth mass is directly related to luminosity by employing theoretical evolutionary tracks. Since the periods of LPVs are months to years, we have taken t10 epochs from And VII during the period 2015 − 2017, spaced by a month or more in the i- and V -bands, plus one epoch in the I-band, to find these variable stars. As a result, a catalogue of 10; 000 stars and 48 LPVs was identified within two halflight radii of And VII. The i−band amplitude of variability for our LPV stars ranged from 0:2{1:6 mag. We used the luminosity distribution of those stars to reconstruct their star formation history, employing a method that we have applied in the cases of other Local Group galaxies. By using as well the Spitzer catalogues at mid-IR wavelengths, we constructed a detailed map of the mass feedback into the interstellar medium (ISM).
    [Show full text]
  • History of Telescopes
    1 OUR PLACE IN SPACE Earth: Earth is the third planet from the Sun, and the densest and fifth- largest of the eight planets in the Solar System. It is also the largest of the Solar System’s four terrestrial planets. The Solar System : The Solar System consists of the Sun and those celestial objects bound to it by gravity, all of which were formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. Of the many objects that orbit the Sun, most of the mass is contained within eight relatively solitary planets whose orbits are almost circular and lie within a nearly flat disc called the ecliptic plane. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, the gas giants, are substantially more massive than the terrestrials. They are Jupiter, Saturn, Uranus and Neptune. The Sun: The Sun is the star at the center of the Solar System. It has a diameter of about 1,392,000 kilometers about 109 times that of Earth, and its mass (about 2 × 1030 kilograms, 330,000 times that of Earth) accounts for about 99.86% of the total mass of the Solar System. The Milky way Galaxy: The Milky Way Galaxy is the galaxy in which the Solar System is located. The Milky Way is a barred spiral galaxy that is part of the Local Group of galaxies. It is one of billions of galaxies in the observable universe. The Local Group: The Local Group is the group of galaxies that includes our galaxy, the Milky Way.
    [Show full text]