KDDI Global ICT Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 In the Matter of ) ) GU HOLDINGS INC. and EDGE CABLE ) File Nos. SCL-LIC-2020_________ HOLDINGS USA, LLC ) ) Application for a License to Construct, Land, ) and Operate the Pacific Light Cable Network ) to Connect the United States to Taiwan and ) the Philippines ) APPLICATION FOR A CABLE LANDING LICENSE (STREAMLINED PROCESSING REQUESTED) Pursuant to the Act Relating to the Landing and Operation of Submarine Cables in the United States, 47 U.S.C. §§ 34-39, Executive Order 10,530, and 47 C.F.R. § 1.767, GU Holdings Inc. (“GU Holdings”) and Edge Cable Holdings USA, LLC (“Edge USA”) (together, the “Applicants”), request a license to construct, land, and operate a high-capacity fiber-optic submarine cable system connecting the United States to Taiwan and the Philippines. For purposes of this application, the system is referred to as the Pacific Light Cable Network (“PLCN”). PLCN will be made up of the following elements: ● The fiber pair owned by GU Holdings and its affiliates connecting the United States to Branching Unit 2 (Fiber Pair 2 on each of Segments S1.1.1, S1.1.2, and S1.2 1); ● The branch owned by GU Holdings’ affiliates connecting Taiwan to Branching Unit 1, including the two fiber pairs on that branch (Segment S2); ● The fiber pair owned by Edge USA and its affiliates connecting the United States to Branching Unit 2 (Fiber Pair 1 on each of Segments S1.1.1, S1.1.2, and S1.2); ● The branch owned by Edge USA’s affiliates connecting Baler, Philippines, to 1 For segment references, see Appendix A hereto. -
SUPPLY RECORD - REPEATERED SYSTEM ( 1 ) 1St Generation (Regenerator System Using 1.31 Micron Wavelength)
SUPPLY RECORD - REPEATERED SYSTEM ( 1 ) 1st Generation (Regenerator System using 1.31 micron wavelength) System Landing Countries Capacity Route Length Delivery Japan, U.S.A. (Guam, TPC-3 (Note 1) 560Mbps (280Mbps x 2fp) 3,760km Dec. 88 Hawaii) Hong Kong, Japan, Hong Kong-Japan-Korea 560Mbps (280Mbps x 2fp) 4,700km Apr. 90 Korea Kuantan-Kota Kinabaru Malaysia 840Mbps (420Mbps x 2fp) 1,570km Dec. 90 Japan, U.S.A. North Pacific Cable (NPC) 1680Mbps (420Mbps x 4fp) 9,400km Apr. 91 (Mainland) Surabaya-Banjarmasin Indonesia 280Mbps (280Mbps x 1fp) 410km Dec. 91 N. ote 1:The very first Branching Units deployed in the Pacific 1 SUPPLY RECORD - REPEATERED SYSTEM ( 2 ) 2nd Generation (Regenerator System using 1.55 micron wavelength) System Landing Sites Capacity Route Length Delivery UK-Germany No.5 (Note 2) UK, Germany 3.6Gbps (1.8Gbps x 2fp) 500km Oct. 91 Brunei-Singapore Brunei, Singapore 1120Mbps (560Mbps x 2fp) 1500km Nov. 91 Brunei, Malaysia, Brunei-Malaysia-Philippines (BMP) 1120Mbps (560Mbps x 2fp) 1500km Jan. 92 Philippines Japan, U.S.A. TPC-4 1680Mbps (560Mbps x 3fp) 5000km Oct. 92 (Mainland) Japan, Hong Kong, APC Taiwan, Malaysia, 1680Mbps (560Mbps x 3fp) 7600km Aug. 93 Singapore Malaysia-Thailand Malaysia, Thailand 1120Mbps (560Mbps x 2fp) 1500km Aug. 94 (incl. Petchaburi-Sri Racha) Russia-Japan-Korea (RJK) Russia, Japan, Korea 1120Mbps (560Mbps x 2fp) 1700km Nov. 94 Thailand, Vietnam, Thailand-Vietnam-Hong Kong (T-V-H) 1120Mbps (560Mbps x 2fp) 3400km Nov. 95 Hong Kong N. ote 2: The very first giga bit submarine cable system in the world 2 SUPPLY RECORD - REPEATERED SYSTEM ( 3 ) 3rd Generation (Optical Amplifier System) System Landing Sites Capacity Route Length Delivery Malaysia Domestic (Southern Link) Malaysia 10Gbps (5Gbps x 2fp) 2,300km Jul. -
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. In the Matter of EDGE CABLE HOLDINGS USA, LLC, File No. SCL-LIC-2020-____________ AQUA COMMS (AMERICAS) INC., AQUA COMMS (IRELAND) LIMITED, CABLE & WIRELESS AMERICAS SYSTEMS, INC., AND MICROSOFT INFRASTRUCTURE GROUP, LLC, Application for a License to Land and Operate a Private Fiber-Optic Submarine Cable System Connecting the United States, the United Kingdom, and France, to Be Known as THE AMITIÉ CABLE SYSTEM JOINT APPLICATION FOR CABLE LANDING LICENSE— STREAMLINED PROCESSING REQUESTED Pursuant to 47 U.S.C. § 34, Executive Order No. 10,530, and 47 C.F.R. § 1.767, Edge Cable Holdings USA, LLC (“Edge USA”), Aqua Comms (Americas) Inc. (“Aqua Comms Americas”), Aqua Comms (Ireland) Limited (“Aqua Comms Ireland,” together with Aqua Comms Americas, “Aqua Comms”), Cable & Wireless Americas Systems, Inc. (“CWAS”), and Microsoft Infrastructure Group, LLC (“Microsoft Infrastructure”) (collectively, the “Applicants”) hereby apply for a license to land and operate within U.S. territory the Amitié system, a private fiber-optic submarine cable network connecting the United States, the United Kingdom, and France. The Applicants and their affiliates will operate the Amitié system on a non-common-carrier basis, either by providing bulk capacity to wholesale and enterprise customers on particularized terms and conditions pursuant to individualized negotiations or by using the Amitié cable system to serve their own internal business connectivity needs. The existence of robust competition on U.S.-U.K., U.S.-France, and (more broadly) U.S.-Western Europe routes obviates any need for common-carrier regulation of the system on public-interest grounds. -
Optical Fibre Submarine Systems
Optical fibre submarine GREENLAND systems D N ALASKA A (USA) ICELAND L Umeå N Vestmannaeyjar BOTNIA I Vaasa F Faroes SWEDEN Rauma RUSSIA 6 x 622 Turku Hallstavik Whittier Valdez Karst 2 + 1 x 2.5 Gbit/s Norrtälje Kingisepp Seward Tallin NORWAY ESTONIA U N Lena I 2 x 560 LATVIA CANTAT-3 T point AC-1 E DENMARK CANADA D Westerland LITHUANIA Northstar 2 x 4 (WDM) x 2.5 Gbit/s TAT-14 K I N REP. OF IRELAND G BELORUSSIA TAT-10 2 + 1 x 560 D S D Norden/ N O LA Grossheide ER POLAND M TH NE GERMANY Gemini North 2 x 6 (WDM) x 2.5 Gbit/s BELGIUM CZECH Dieppe REP. Port UKRAINE Alberni NPC 3 + 1 x 420 St Brieuc SLOVAK REP. M O KAZAKHSTAN L FRANCE D Seattle AC-1 AUSTRIA A V TPC-5 2 x 5 Gbit/s HUNGARY I Tillamook PTAT-1 3 + 1 x 420 Gbit/s SWITZ. I A A Odessa DM) x 2.5 St Hilaire de Riez SLOVEN 2 x 6 (W MONGOLIA i South FLAG Atlantic-1 160 Gbit/s emin CROATIA ROMANIA Pacific G Y I U Novorossijsk City Pennant Point HERZEGOVINABOSNIA- G s T O 2.5 SochiGbit/s PC-1 Medway Harbour Gbit/ S x 5 L TAT-11 3 DxM 560) A Varna Shirley x 3 (W A V Nakhodka TAT-12 2 x 3 (WDM) x 5 Gbit/s 2 I GEORGIA Ishikati TAT-13 A BULGARIA UZBEKISTAN Rhode Island F L PC-1 L ALBANIA Poti A KYRGYZSTAN N Long Island G Y TAT-9 2 + 1 x 560 ARMENIA AZERBAIJAN New York MACEDONIA TURKMENISTAN NORTH Bandon TAT-8 2 x 280 Istanbul KOREA FLAG Atlantic-1 160 Gbit/s Azores SPAIN E R-J-K C 2 x 560 0 EE 6 R 5 G Dalian A CANUS-1 TAT-14 PORTUGAL TURKEY JIH CableProject Japan-US Manasquan Lisbon UNITED STATES 3x TAJIKISTAN Point Sesimbra PC-1 Arena Tuckerton Marmaris Yantaï SOUTH P TPC-4 2 x 560 A S -
Creating Trust in Critical Network Infrastructures: Korean Case Study
INTERNATIONAL TELECOMMUNICATION UNION ITU WORKSHOP ON Document: CNI/05 CREATING TRUST IN CRITICAL 20 May 2002 NETWORK INFRASTRUCTURES Seoul, Republic of Korea — 20 - 22 May 2002 CREATING TRUST IN CRITICAL NETWORK INFRASTRUCTURES: KOREAN CASE STUDY Creating trust in critical network infrastructures: Korean case study This case study has been prepared by Dr. Chaeho Lim <[email protected]>. Dr Cho is Visiting Professor at the Korean Institute of Advanced Science & Technology, in the Infosec Education and Hacking, Virus Research Centre. This case study, Creating Trust in Critical Network Infrastructures: Korean Case Study, is part of a series of Telecommunication Case Studies produced under the New Initiatives programme of the Office of the Secretary General of the International Telecommunication Union (ITU). Other country case studies on Critical Network Infrastructures can be found at <http://www.itu.int/cni>. The opinions expressed in this study are those of the author and do not necessarily reflect the views of the International Telecommunication Union, its membership or the Korean Government. The author wishes to acknowledge Mr Chinyong Chong <[email protected]> of the Strategy and Policy Unit of ITU for contributions to the paper. The paper has been edited by the ITU secretariat. The author gratefully acknowledges the generous assistance of all those who have contributed information for this report. In particular, thanks are due to staff of Ministry of Information and Communication and Korean Information Security Agency for their help and suggestions. 2/27 Creating trust in critical network infrastructures: Korean case study TABLE OF CONTENTS Executive summary ......................................................................................................................................................... 4 1. Introduction............................................................................................................................................................. -
Interim Report on the Asian Telecom Connectivity Market
Asian Telecom Connectivity Market: Executive Summary (Research conducted 2005) The following is a summary of the findings of the Telecommunications Research Project University of Hong Kong NOTE1 The original research was undertaken for a private client in 2005 and the detailed report and recommendations are therefore not publicly available, but the following Executive Summary was made available at the time to companies who provided information and their opinions. In respect of demand and supply, the research goes beyond the data and analysis provided by TeleGeography (an industry benchmark publication) by estimating various rates of growth of demand against estimates of capacity lit and capacity used, thereby projecting various dates of capacity exhaustion. Unity Cable Since this research the 10,000 km Unity Cable connecting Japan and the USA has been announced (2008) consisting of carriers SingTel, Bharti- Airtel and KDDI, together with Internet companies Google, Pacnet and Global Transit (subsidiary of Malaysian network exchange company, AIMS). 1 This Executive Summary also appears as Appendix 2 in John Ure (ed.) Telecommunications Development in Asia, HKU Press, April 2008 1 Asian Telecom Connectivity Market: Executive Summary2 Between June and August 2005, the Telecommunications Research Project (TRP) at the University of Hong Kong undertook an extensive look at the regional bandwidth market. The research study was undertaken with intent to understand both the supply (and pricing) and demand sides of the equation, based upon feedback direct from carriers and experts, on the one hand, and from those directly purchasing bandwidth on the other. It quickly became apparent that the supply and demand of bandwidth represent two distinct stories which, not only are not necessarily in alignment (obvious enough to anyone who has been watching the market over the last 10 years), but are at times quite seriously disconnected in their fundamental drivers. -
Economic Regulation of Airports Using the ATRS Database for the Following Indicators
B Performance of Australia’s airports — sensitivity analysis The Commission compared the monitored airports — Sydney, Melbourne, Brisbane and Perth — against a selection of overseas airports, for different indicators of airport performance (chapter 5). The Commission based some of its analysis on data from the Air Transport Research Society (ATRS) Airport Benchmarking Report (ATRS 2018). That report contains information for more than 200 airports in 2016. The Commission presented results for a sample of airports with more than 10 million passengers in chapter 5 of its draft report Economic Regulation of Airports using the ATRS database for the following indicators: whole of airport operating costs per passenger (figure 5.4) input utilisation rates per million passengers (figure 5.5) – runways – terminal area – gates aeronautical revenue per passenger (figure 5.11) Results for revenue and whole of airport operating costs per passenger were adjusted using both nominal United States Dollars (USD) and USD adjusted for purchasing power parity (PPP) (box 5.3). The sensitivity of results was checked by using other samples of airports (box 5.2) and are presented below. Results are annotated with three-letter International Air Transport Association codes to allow readers to identify the airports in each sample (codes and corresponding airports are listed in table B.1). The qualitative conclusions in chapter 5 are generally robust to variations in the sample of airports chosen, with some exceptions noted in chapter 5. PERFORMANCE OF AUSTRALIA'S -
INTERNATIONAL BUREAU REPORT 2006 Section 43.82 Circuit Status Data
INTERNATIONAL BUREAU REPORT 2006 Section 43.82 Circuit Status Data February 2008 Cathy Hsu Policy Division 2006 Section 43.82 Circuit Status Data Introduction This report contains information on U.S.-international facilities-based common carriers’ circuits as of year-end 2006 that was submitted to the Federal Communications Commission (Commission) by U.S. common carriers pursuant to section 43.82 of the Commission’s rules.1 In addition to the 2006 data, for comparison purposes, this report includes data from previous reports covering 2003 through 2005. Section 43.82 of the Commission’s rules directs U.S.-international facilities-based common carriers to file an international circuit status report by March 31 each year for circuits used to provide international services as of December 31 of the preceding year. The detailed filing requirements are set forth in the Manual for Filing Section 43.82 Circuit Status Data, which is available on the Commission’s Web site at http://www.fcc.gov/ib/pd/pf/csmanual.html. This report presents the Commission staff review and analysis of the information provided to the Commission by the carriers.2 The aggregated information in this report summarizes for public use information that the Commission collects for regulatory purposes. This information also serves as a database for determining and monitoring the payments that the Commission is required to collect (i.e., annual regulatory fees on active 64 Kbps-equivalent international circuits). Reporting Requirements All U.S.-international facilities-based common carriers are required to file circuit status information showing both activated (in-service) and idle (available but not in-service) capacity. -
Broadband Infrastructure in the ASEAN-9 Region
BroadbandBroadband InfrastructureInfrastructure inin thethe ASEANASEAN‐‐99 RegionRegion Markets,Markets, Infrastructure,Infrastructure, MissingMissing Links,Links, andand PolicyPolicy OptionsOptions forfor EnhancingEnhancing CrossCross‐‐BorderBorder ConnectivityConnectivity Michael Ruddy Director of International Research Terabit Consulting www.terabitconsulting.com PartPart 1:1: BackgroundBackground andand MethodologyMethodology www.terabitconsulting.com ProjectProject ScopeScope Between late‐2012 and mid‐2013, Terabit Consulting performed a detailed analysis of broadband infrastructure and markets in the 9 largest member countries of ASEAN: – Cambodia – Indonesia – Lao PDR – Malaysia – Myanmar – Philippines – Singapore – Thailand – Vietnam www.terabitconsulting.com ScopeScope (cont(cont’’d.)d.) • The data and analysis for each country included: Telecommunications market overview and analysis of competitiveness Regulation and government intervention Fixed‐line telephony market Mobile telephony market Internet and broadband market Consumer broadband pricing Evaluation of domestic network connectivity International Internet bandwidth International capacity pricing Historical and forecasted total international bandwidth Evaluation of international network connectivity including terrestrial fiber, undersea fiber, and satellite Evaluation of trans‐border network development and identification of missing links www.terabitconsulting.com SourcesSources ofof DataData • Terabit Consulting has completed dozens of demand studies for -
2013 Submarine Cable Market Industry Report
submarine telecoms INDUSTRY REPORT 2013 Authored by Submarine Cable Industry Report Issue 2 March 2013 Copyright © 2013 by Submarine Telecoms Forum, Inc. All rights reserved. No part of this book may be used or reproduced by any means, graphic, electronic, or mechanical, including photocopying, recording, taping or by any information storage retrieval system without the written permission of the publisher except in the case of brief quotations embodied in critical articles and reviews. Submarine Telecoms Forum, Inc. 21495 Ridgetop Circle Suite 201 Sterling, Virginia 20166 USA www.subtelforum.com ISSN: pending 2 Disclaimer: While every care is taken in preparation of this publication, the publishers cannot be held responsible for the accuracy of the information herein, or any errors which may occur in advertising or editorial content, or any consequence arising from any errors or omissions, and the editor reserves the right to edit any advertising or editorial material submitted for publication. If you have a suggestion, please let us know by emailing [email protected]. 3 Table of Contents 1. Foreword 10 2. Introduction 11 3. Executive Summary 13 4. Worldwide Market Analysis and Outlook 18 4.1 Overview of Historical System Investment 20 4.2 2008 – 2012 Systems in Review 20 4.3 Systems Investment in 2013 and Beyond 21 5. Supplier Analysis 25 5.1 System Suppliers 25 5.2 Upgrade Suppliers 26 6. Ownership Analysis 28 6.1 Financing of Current Submarine Systems 28 7. Regional Market Analysis and Capacity Outlook 31 7.1 Transatlantic -
Forum Second Issue
An international forum for the expression of ideas and First Quarter 2002 opinions pertaining to the submarine telecoms industry 1 Contents List of Advertisers Editors Exordium 3 Undersea Intelligence on the Costa del Sol International Cable Protection Committee 5 EMEA Conference 30 Emails to the Editor 4 Global Marine Systems Ltd 5,6 The State of the Industry Network Maintenance 5 Europe, the Middle East, Africa and India TMS International 16 Christian Annoque 31 Sub Tech 7 Offshore Site Investigation Conference 18 Tracking the Cableships Sub Tell 8 Latest locations of the world’s cableships 36 International Subsea & Telecom Services 22 Ventures 9 Technology in Long-span Smit-Oceaneering Cable Systems 29,39,47 Submarine Systems Vessels 10 CTC Marine Projects 35 Tony Frisch 40 Searching for a light in the fog A future for the submarine cable industry? Fibre Optics in Offshore Michael Ruddy 11 Communications Jon Seip 45 Bandwidth ORGANISING A The State of the Market Letter to a friend CON ERENCE? Rex Ramsden 19 Jean Devos 52 Give your exhibition or conference Countdown to Apollo Launch maximum exposure to the submarine Australasian Communications Conference The world’s most advanced cable system telecoms industry. Advertise your event in A once-only chance to hear from influential Katherine Edwards 23 Submarine Telecoms Forum strategists and CEOs 56 The State of the Industry and reach all the key people. The Americas Diary Dates Email: [email protected]@subtelforum.com John Manock 27 Upcoming Conferences 2002 57 2 An international forum for the expression of ideas and opinions pertaining to the submarine telecom industry Exordium Submarine Telecoms Forum is published quarterly by WFN Strategies, L.L.C. -
PPC-1 Sydney-Guam PIPE Pacific Cable: New Internet Gateway for PNG Via Madang
Contemporary PNG Studies: DWU Research Journal Volume 15, November 2011 1 PPC-1 Sydney-Guam PIPE Pacific Cable: New Internet Gateway for PNG via Madang Peter K. Anderson Joseph Kim Suwamaru Abstract PPC-1 Sydney Guam PIPE Pacific Cable (PPC1) provides a third Internet gateway for Australia. A branching unit to Madang will be an initial connection for PNG to connect to the Internet via this pathway. The PPC- 1 undersea submarine cable which runs from Guam to Sydney provides a third high speed international gateway to Australia. A branching unit to Madang will be an initial connection for PNG providing a total bandwidth capacity of 10Gbps enabling high speed telecommunication traffic within PNG and also between PNG and the world. This paper presents the technical characteristics of the PPC-1 including the earlier submarine cable facilities. Key words: submarine cable , fiber optic, attenuation, signal amplification, dense wave division multiplexing (DWDM), optical add/drop multiplexing (OADM), branching unit. Introduction The evolving digital revolution is making a seemingly insatiable demand on bandwidth 1. Simultaneous paradigm shifts in telecommunications technology leading to enormous growth of transmission and switching capacity make more digital services available which further fuels the demand for bandwidth. Well known digital online services which drive demands on bandwidth include instant messaging (email) and Web access with file downloads, online shopping or electronic commerce (e.g. purchasing from Amazon.com), Internet banking and video conferencing 2. Emerging bandwidth demanding services include movie and video downloads, real time audio and video streaming, video on demand, free long distance telephone calls (VOIP 3), digital TV, and social networking sites such as Face Book, Twitter and Youtube which provides low definition TV.