US5618710.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

US5618710.Pdf ||||||||| USOO56 871 OA United States Patent 19 11 Patent Number: 5,618,710 Navia et al. 45 Date of Patent: Apr. 8, 1997 54 CROSSLINKED ENZYME CRYSTALS W.H. Bishop et al., “Isoelectric Point of a Protein in the Crosslinked Crystalline State: B-Lactoglobulin', J. Mol. (75 Inventors: Manuel A. Navia, Lexington; Nancy L. Biol, 33, pp. 415-421 (1968). St. Clair, Charlestown, both of Mass. A. Dyer et al., "A Thermal Investigation of the Stability of Crystalline Cross-Linked Carboxypeptidase A', Thermo 73 Assignee: Vertex Pharmaceuticals, Inc., chimica Acta, 8, pp. 455-464 (1974). Cambridge, Mass. D.J. Haas, "Preliminary Studies on the Denaturation of Cross-Linked Lysozyme Crystals', Biophys. J., 8, pp. 549–555 (1968). 21) Appl. No.: 17,510 H.C. Hedrich et al., "Large-Scale Purification, Enzymic Characterization, and Crystallization of the Lipase from 22 Fied: Feb. 12, 1993 Geotrichum Candidum”, Enzyme & Microb. Technol., 13, pp. 840-847 (1991). Related U.S. Application Data J.V. Hupkes, “Practical Process Conditions for the Use of 63 Continuation-in-part of Ser. No. 864,424, Apr. 6, 1992, Immobilized Glucose Isomerase,” Starch, 30, pp. 24–28 abandoned, which is a continuation-in-part of Ser. No. (1978). 720,237, Jun. 24, 1991, abandoned, which is a continuation P.J. Kasvinsky et al., "Activity of Glycogen Phosphorylase in-part of Ser. No. 562,280, Aug. 3, 1990, abandoned. in the Crystalline State', J.Biol. Chem., 251, pp. 6852-6859 (51) Int. Cl." .............................. C12N 1/00; C12P1/00; (1976). H. Kirsten et al., “Catalytic Activity of Non-Cross-Linked GON 33/543; CO7K 17700 Microcrystals of Aspartate Aminotransferase in Poly(ethyl 52 U.S. C. ........................ 435/174; 424/94.1; 424/946; ene glycol)”, Biochem. J., 211, pp. 427-434 (1983). 424/94.63; 435/41; 435/109; 435/195; 435/198; A.M. Klibanov, "Enzymatic Catalysis in Anhydrous Organic 435/212; 435/218; 435/817; 436/518; 530/413; Solvents', Trends in Biochem. Sci., 14, pp. 141-144 (1989). 530/810 G. Lindeberg, "A Convenient Synthesis of Aspartame', J. 58 Field of Search .............................. 435/41, 174, 176, Chem. Ed., 64, pp. 1062-1064 (1987). 435/177, 180, 817, 109, 195, 198, 212, D. Lombardo et al., "Crystallization and Preliminary X-ray 218; 424/94.1, 94.6, 94.63; 436/518; 530/413, Study of Horse Pancreatic Lipase', J. Mol. Biol., 205, pp. 810 259-261 (1989). S. Luesner, "Applications of Mirobial Enzymes To Produce 56 References Cited High Fructose Corn Syrup and Other Corn Sweetners' U.S. PATENT DOCUMENTS (publication date unknown). T.H. Maugh, II, "A Renewed Interest in immobilized Re. 33,441 11/1990 Wumpelmann et al. ................. 435.194 Enzymes', Science, 223, pp. 474-476 (1984). 4,390,632 6/1983 Carter, II ................. ... 435/83 X 4,411,996 10/1983 Lloyd ........................................ 435/94. (List continued on next page.) 4,693,985 9/1987 Degen et al. ... ..., 436/531 4,699,882 10/1987 Visuri ...................................... 435/188 Primary Examiner-David M. Naff 4,892,825 1/1992 Wumpelmann et al. ................. 435/94. Attorney, Agent, or Firm-Fish & Neave; James F. Haley, 5,120,650 6/1992 Visuri ...................................... 435/176 Jr.; Margaret A. Pierri FOREIGN PATENT DOCUMENTS (57) ABSTRACT 0092829 11/1983 European Pat. Off. ........ C12P 21/02 A protein such as an enzyme of antibody is immobilized by 0169767 1/1986 European Pat. Off. ........ C2N FO2 crosslinking crystals of the protein with a multifunctional 0166427 1/1986 European Pat. Off. .......... C12N 9/92 0.175582 3/1986 European Pat. Off. .......... C12N 9/96 crosslinking agent. The crosslinked protein crystals may be 0.195311 9/1986 European Pat. Off. .......... C11C 3100 lyophilized for storage. A preferred protein is an enzyme 6341503 11/1989 European Pat. Off. Such as thermolysin, elastase, asparaginase, lysozyme, 0367302 5/1990 European Pat. Off. .......... C2N 9/52 lipase or urease. Crosslinked enzyme crystals preferably WO85/03247 8985 WIPO .................... ... B08B 3/10 retain at least 91% activity after incubation for three hours WO91A05857 5/1991 WEPO .............................. C12N 9/00 in the presence of a concentration of PronaseTM that causes OTHER PUBLICATIONS the soluble uncrosslinked form of the enzyme to lose at least 94% of its initial activity under the same conditions. A G.M. Alter et al., "Kinetic Properties of Carboxypeptidase B preferred enzyme:Pronase M ratio is 1:40. Enzyme crystals in Solutions and Crystals”, Biochemistry, 16, pp. 3663-3668 (1977). that are crosslinked may be microcrystals having a cross S.A. Barker et al., “Enzymatic Processes for High-Fructose section of 10 mm or less. Crosslinked enzyme or antibody Corn Syrup,” In: Enzymes and Immobilized Cells in Bio crystals may be used in an assay, diagnostic kit or biosensor technology, Menlo Park, CA (1985). for detecting an analyte, in an extracorporeal device for G.J. Bartling et al., "Protein Modification in Nonaqueous altering a component of a fluid, in producing a product such Media - A New Method of Enzyme Cross-Linking', as using crosslinked thermolysin crystals to produce aspar Enzyme, 18, pp. 310-316 (1974). tame, in separating a substance from a mixture, and in S.J. Bayne et al., "Enzymatically Active, Cross-Linked Pig therapy. Heart Lactate Dehydrogenase Crystals', Carlsberg Res. Comm., 41, pp. 211-216 (1976). 13 Claims, 19 Drawing Sheets 5,618,710 Page 2 OTHER PUBLICATIONS E. Tuchsen et al., "Kinetic Properties of Subtilisin Type T. Nakagawa et al., “Development of Effective Cross-Link Carlsberg in the Crystalline State', Carlsberg Res. Comm., ing Method for Bioactive Substance-Enzyme Immobiliza 42, pp. 407-420 (1977). tion Using Glutaraldehyde Oligomers', Chem. Pharm. Bull, K. Visuri et al., "Purification and Characterisation of Crys 37, pp. 2463-2466 (1989). talline B-Amylase From Barley”, Eur: J. Biochem., 28, pp. K. Polyvinen et al., "Pilot-Scale Production and Properties 555-565 (1972). of Lignin Peroxidases’, In: Enzymes in Biomass Conver K. Visuri et al., “Enzymatic Production of High Fructose sion, Am. Chem. Soc., Boston, MA, Apr. 22-27 (1990). Corn Syrup (HFCS) Containing 55% Fructose in Aqueous F.A. Quiocho et al., "Intermolecular Cross Linking of a Ethanol", Biotech. & Bioeng., 30, pp. 917-920 (1987). Protein in the Crystalline State: Carboxypeptidase-A', K. Visuri, "Industrial Scale Crystallization of Glucose Proc. Nat. Acad. Sci., 52, pp. 833–839 (1964). Isomerase', Enzyme Engineering X: International Confer F.A. Quiocho et al., “Effects of Changes in Some Solvent ence, Sep. 24–29, 1989, Kashikojima, Japan. Parameters on Carboxypeptidase A in Solution and in K. Visuri, "Method of Producing Cross-Linked Glucose Cross-Linked Crystals', Proc. Nat. Acad. Sci., 57, pp. Isomerase', Szabadalmi Kozlony es Vedjegyertesito, 525-537 (1967). Budapest, 1990. Abstract T/52 817 (Original in Hungarian, D.M. Shotton et al., "Conformational Changes and Inhibitor English translation). Binding at the Active Site of Elastase', Cold Spring Har K. Visuri, "Crosslinked Crystalline Glucose Isomerase As bour Symp. Quant. Bio., XXXVI, pp. 91-105 (1972). Industrial Catalyst', Lecture in Detmold Starch Convention C.A. Spilburg et al., "Kinetic Properties of Crystalline (1992). Enzymes. Carboxypeptidase A', Biochemistry, 16, pp. A. Yonath et al., "Crystallographic Studies of Protein Dena 1142-1150 (1977). turation and Renaturation. 1. Effects of Denaturants on T. Tashima et al., "Structure of a New Oligomer of Glut Volume and X-ray Pattern of Cross-Linked Triclinic araldehyde Produced by Aldol Condensation Reaction', J. Lysozyme Crystals', Biochemistry, 16, pp. 1413-1417 Org. Chem., 56, pp. 694-697 (1991). V.P. Torchlin et al., "The Principles of Enzyme Stabilization: (1977). III. The Effects of the Length of Intra-Molecular Product Information SPEZYMECE) CIGI, Genecor Interna Cross-Linkages on the Thermostability of Enzymes', Bio tional, (publication date unknown). chem. Biophys. Acta, 522, pp. 277–283 (1978). Nakanishi et al., "Continuous Synthesis of N-(Benzyloxy V.P. Torchlin et al., “Principles of Enzyme Stabilization: V. carbonyl)-L-Aspartyl-L-Phenylalanine Methyl Ester With The Possibility of Enzyme Selfstabilization Under the Immobilized Thermolysin in an Organic Solvent', Bio/ Action of Potentially Reversible Intramolecular Technology, 3, pp. 459-464 (1985). Cross-Linkages of Different Length', Biochem. Biophys. Lee et al., Bioorganic Chemistry, vol. 14, 1986, pp. Acta, 568, pp. 1-10 (1979). 202-210. U.S. Patent Apr. 8, 1997 Sheet 1 of 19 5,618,710 A/G / O.33 O3 0.29 O.27 ABSORBANCE 0.25 (34.5 nm) 0.23 O2 0.9 O7 O 5 O 5 TME(MN) H CLEC THERMOLYSN - O - SOLUBLE THERMOLYSIN U.S. Patent Apr. 8, 1997 Sheet 2 of 19 5,618,710 A/G 2 OO 80 60 MAXIMUM ACTIVITY 40 45 55 65 75 85 95 105 -HCLEC THERMOLYSN -O-SOLUBLE THERMOLYSIN U.S. Patent Apr. 8, 1997 Sheet 3 of 19 5,618,710 A/G.3 MAXIMUM ACTIVITY OO O 2O 3.0 40 50 TIME(DAYS) -HCLEC THERMOLYSIN -O-SOLUBLE THERMOYSIN U.S. Patent Apr. 8, 1997 Sheet 4 of 19 5,618,710 A/G. 4 OOO 80 60 MAXIMUM % MAX ACT WITY ACTIVITY 60 40 O 20 60 90 TIME (MIN) Oe OO O 20 30 40 TME ( DAYS) -H CLEC THERMOLYSIN -O-SOLUBLE THERMOLYSIN U.S. Patent Apr. 8, 1997 Sheet 5 of 19 5,618,710 A/654 OO 80 % PRODUCT 6 40 20 2 3 4 5 6 7 8 9 O TIME ( DAYS) -- CLEC THERMOLYS IN - A - SOLUBLE THERMOLYSIN U.S. Patent Apr. 8, 1997 Sheet 6 of 19 5,618,710 00 80 % PRODUCT 60 TIME (HOURS) - A - CLEC THERMOLYSN -- SOLUBLE THERMOLYSIN U.S. Patent Apr. 8, 1997 Sheet 7 of 19 5,618,710 00 80 60 PRODUCT 40 20 07; 0.0 O 2O 3.0 40 TME(HOURS) - HCLEC THERMOLYSN A SOLUBLE THERMOLYSN U.S. Patent Apr.
Recommended publications
  • The 3-O-Sulfation of Heparan Sulfate Modulates Protein Binding and Lyase Degradation
    The 3-O-sulfation of heparan sulfate modulates protein binding and lyase degradation Pradeep Chopraa, Apoorva Joshia,b, Jiandong Wuc, Weigang Lua,b, Tejabhiram Yadavallid, Margreet A. Wolferta,e, Deepak Shuklad,f, Joseph Zaiac, and Geert-Jan Boonsa,b,e,1 aComplex Carbohydrate Research Center, University of Georgia, Athens, GA 30602; bDepartment of Chemistry, University of Georgia, Athens, GA 30602; cDepartment of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University of Medicine, Boston, MA 02118; dDepartment of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612; eDepartment of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; and fDepartment of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 Edited by Laura L. Kiessling, Massachusetts Institute of Technology, Cambridge, MA, and approved November 24, 2020 (received for review June 22, 2020) Humans express seven heparan sulfate (HS) 3-O-sulfotransferases GlcA into iduronic acid (IdoA), followed by O-sulfation by idur- that differ in substrate specificity and tissue expression. Although onosyl 2-O-sulfotransferase (2-OST), glucosaminyl 6-O-sulfo- genetic studies have indicated that 3-O-sulfated HS modulates transferases (6-OST), and 3-O-sulfotransferases (3-OST) (5). many biological processes, ligand requirements for proteins en- HS modifications are often incomplete, resulting in at least 20 gaging with HS modified by 3-O-sulfate (3-OS) have been difficult different HS disaccharide moieties, which can be combined in to determine. In particular, the context in which the 3-OS group different manners, creating considerable structural diversity (4, needs to be presented for binding is largely unknown.
    [Show full text]
  • Analysis of Glycosaminoglycans with Polysaccharide Lyases
    Analysis of Glycosaminoglycans with UNIT 17.13B Polysaccharide Lyases Polysaccharide lyases are a class of enzymes useful for analysis of glycosaminoglycans (GAGs) and the glycosaminoglycan component of proteoglycans (PGs). These enzymes cleave specific glycosidic linkages present in acidic polysaccharides and result in depo- lymerization (Linhardt et al., 1986). These enzymes act through an eliminase mechanism resulting in unsaturated oligosaccharide products that have UV absorbance at 232 nm. The lyases are derived from a wide variety of pathogenic and nonpathogenic bacteria and fungi (Linhardt et al., 1986). This class of enzymes includes heparin lyases (heparinases), heparan sulfate lyases (heparanases or heparitinases), chondroitin lyases (chondroiti- nases), and hyaluronate lyases (hyaluronidases), all of which are described in this unit. Polysaccharide lyases can be used, alone or in combinations, to confirm the presence of GAGs in a sample as well as to distinguish between different GAGs (see Table 17.13B.1 and Commentary). The protocols given for heparin lyase I are general and, with minor modifications (described for each lyase and summarized in Table 17.13B.2), can be used for any of the polysaccharide lyases. The basic protocol describes depolymerization of GAGs in samples containing 1 µg to 1 mg of GAGs. The alternate protocol describes depolymerization of GAGs in samples containing <1 µg of radiolabeled GAG. Two support protocols describe assays to confirm and quantitate the activity of heparin and chondroitin ABC lyases. It is recommended that enzyme activity be assayed before the enzyme is used in an experiment to be sure it is active and has been stored properly. The standard definition of a unit (U), 1 µmol product formed/min, is used throughout this µ ∆ article.
    [Show full text]
  • Structure and Substrate Specificity of Heparinase III from Bacteroides Th
    Glycobiology, 2017, vol. 27, no. 2, 176–187 doi: 10.1093/glycob/cww096 Advance Access Publication Date: 12 October 2016 Original Article Structural Biology Conformational flexibility of PL12 family heparinases: structure and substrate specificity of heparinase III from Bacteroides thetaiotaomicron (BT4657) ThirumalaiSelvi Ulaganathan2, Rong Shi3, Deqiang Yao4, Ruo-Xu Gu5, Marie-Line Garron6, Maia Cherney2, D Peter Tieleman5, Eric Sterner7, Guoyun Li7, Lingyun Li7, Robert J Linhardt7, and Miroslaw Cygler2,1 2Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Saskatchewan, Canada, 3Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada, 4National Center for Protein Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China, 5Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada H4P 2R2, Canada, 6the Architecture et Fonction des Macromolécules Biologiques, UMR7257 CNRS, Aix-Marseille University, F-13288 Marseille, France, the INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques, F-13288 Marseille, France, and 7Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA 1To whom correspondence should be addressed: Tel: +1 (306) 966-4361, Fax: +1 (306) 966-4390; e-mail: [email protected] Received 1 July 2016; Revised 5 September 2016; Accepted 6 September 2016 Abstract Glycosaminoglycans (GAGs) are linear polysaccharides comprised of disaccharide repeat units, a hexuronic acid, glucuronic acid or iduronic acid, linked to a hexosamine, N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • A Hierarchical Classification of Polysaccharide Lyases for Glycogenomics Vincent Lombard, Thomas Bernard, Corinne Rancurel, Harry Brumer, Pedro M
    A hierarchical classification of polysaccharide lyases for glycogenomics Vincent Lombard, Thomas Bernard, Corinne Rancurel, Harry Brumer, Pedro M. Coutinho, Bernard Henrissat To cite this version: Vincent Lombard, Thomas Bernard, Corinne Rancurel, Harry Brumer, Pedro M. Coutinho, et al.. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochemical Journal, Portland Press, 2010, 432 (3), pp.437-444. 10.1042/BJ20101185. hal-00539724 HAL Id: hal-00539724 https://hal.archives-ouvertes.fr/hal-00539724 Submitted on 25 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 07 Oct 2010 as manuscript BJ20101185 A hierarchical classification of polysaccharide lyases for glycogenomics V. Lombard*, T. Bernard*†, C. Rancurel*, H Brumer‡, P.M. Coutinho* & B. Henrissat*1 *Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Université de la Méditerranée, Université de Provence, Case 932, 163 Avenue de Luminy, 13288 Marseille cedex 9, France ‡School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden † Present address: Biométrie et Biologie Évolutive, UMR CNRS 5558, UCB Lyon 1, Bât. Grégor Mendel, 43 bd du 11 novembre 1918, 69622 Villeurbanne cedex, France 1To whom correspondence should be addressed: [email protected]‐mrs.fr Abstract: Carbohydrate‐active enzymes face huge substrate diversity in a highly selective manner with only a limited number of available folds.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • Investigating Cyanobacteria Metabolism and Channeling-Based
    Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & McKelvey School of Engineering Dissertations Winter 12-15-2018 Investigating Cyanobacteria Metabolism and Channeling-based Regulations via Isotopic Nonstationary Labeling and Metabolomic Analyses Mary Helen Abernathy Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds Part of the Biomedical Engineering and Bioengineering Commons, and the Chemical Engineering Commons Recommended Citation Abernathy, Mary Helen, "Investigating Cyanobacteria Metabolism and Channeling-based Regulations via Isotopic Nonstationary Labeling and Metabolomic Analyses" (2018). Engineering and Applied Science Theses & Dissertations. 396. https://openscholarship.wustl.edu/eng_etds/396 This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS School of Engineering and Applied Science Department of Energy, Environmental & Chemical Engineering Dissertation Examination Committee: Yinjie Tang, Chair Douglas Allen Marcus Foston Tae Seok Moon Himadri Pakrasi Investigating Cyanobacteria Metabolism and Channeling-based Regulations via Isotopic Nonstationary
    [Show full text]
  • Aminicenantes” (Op8) and “Latescibacteria”(Ws3)
    EXPLORING THE HABITAT DISTRIBUTION, METABOLIC DIVERSITIES AND POTENTIAL ECOLOGICAL ROLES OF CANDIDATE PHYLA “AMINICENANTES” (OP8) AND “LATESCIBACTERIA”(WS3) By IBRAHIM F. FARAG Bachelor of Science in Microbiology Ain Shams University Cairo, Egypt 2006 Master of Science in Biotechnology American University in Cairo Cairo, Egypt 2012 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2017 i EXPLORING THE HABITAT DISTRIBUTION, METABOLIC DIVERSITIES AND POTENTIAL ECOLOGICAL ROLES OF CANDIDATE PHYLA “AMINICENANTES” (OP8) AND “LATESCIBACTERIA”(WS3) Dissertation Approved: Dr. Mostafa S. Elshahed Dissertation Adviser Dr. Noha Youssef Dr. Marianna A. Patrauchan Dr. Wouter Hoff Dr. Michael Anderson ii Acknowledgements I would like to express my sincere gratitude to my advisor Prof. Mostafa Elshahed for his continuous support during my Ph.D study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this dissertation. I could not have imagined having a better advisor and mentor for my Ph.D study. Besides my advisor, I would like to thank the rest of my committee: Prof. Wouter Hoff, Dr. Noha Youssef, Dr. Marianna Patrauchan, and Dr. Michael Anderson, not only for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives. I thank my fellow lab mates Radwa Hanafy and Shelby Calkins for their continuous encouragement and support. I would like to thank the Department of Microbiology and Molecular genetics for their support.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • A Glycomics and Proteomics Study of Aging and Parkinson's Disease In
    www.nature.com/scientificreports OPEN A glycomics and proteomics study of aging and Parkinson’s disease in human brain Rekha Raghunathan1, John D. Hogan3, Adam Labadorf3,4, Richard H. Myers1,3,4 & Joseph Zaia1,2,3* Previous studies on Parkinson’s disease mechanisms have shown dysregulated extracellular transport of α-synuclein and growth factors in the extracellular space. In the human brain these consist of perineuronal nets, interstitial matrices, and basement membranes, each composed of a set of collagens, non-collagenous glycoproteins, proteoglycans, and hyaluronan. The manner by which amyloidogenic proteins spread extracellularly, become seeded, oligomerize, and are taken up by cells, depends on intricate interactions with extracellular matrix molecules. We sought to assess the alterations to structure of glycosaminoglycans and proteins that occur in PD brain relative to controls of similar age. We found that PD difers markedly from normal brain in upregulation of extracellular matrix structural components including collagens, proteoglycans and glycosaminoglycan binding molecules. We also observed that levels of hemoglobin chains, possibly related to defects in iron metabolism, were enriched in PD brains. These fndings shed important new light on disease processes that occur in association with PD. Te volume of the extracellular space (~ 20%) that separates brain cell surfaces and through which molecules difuse displays regional patterns that change during development, aging and neurodegeneration 1,2. Te passage of protein molecules through the extracellular space depends on the geometries and chemical compositions of extracellular and cell surface molecular complexes, the specifc binding domains thereof, and the fxed negative charges of glycosaminoglycan chains3,4. Brain extracellular matrix (ECM) is composed of perineuronal nets (PNNs), interstitial matrices, and basement membranes (blood brain barrier), each consisting of a network of glycoproteins, proteoglycans, hyaluronan and collagens 5.
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]