Aberdeen Plant Materials Center 2014 Annual Technical Report

Total Page:16

File Type:pdf, Size:1020Kb

Aberdeen Plant Materials Center 2014 Annual Technical Report Aberdeen Plant Materials Center United States Department of Agriculture 2014 Annual Technical Report Natural Resources Conservation Service Aberdeen, Idaho March 2015 Contents Introduction On-Center Studies Foundation Seed Production 2014 Field Annual Plan of Operations Great Basin Native Plant Selection and Increase Project – 2013 Annual Report Grand Teton National Park Grass Seed Production – 2013 Report Yellowstone National Park Grass Seed Production – 2013 Report Pollinator Demonstration Planting, Field 28 – 2014 Progress Report Wildflower Seed Mixture Evaluation – 2014 Progress Report Comparative Evaluation Basin wildrye and Thickspike wheatgrass – 2014 Progress Report 2014 Cover Crop Demonstration Legume Cover Crop Winter Kill Evaluation Nevada Bluegrass Initial Evaluation Planting - 2014 Final Report Evaluation of Cover Crop Species for Wind Erosion Protection Influence of Planting Date on Forage Radish in Southeast Idaho Corn/Cover Crop Interseeding Trial Off-Center Studies Curlew National Grassland Off-Center Evaluation – 2014 Progress Report Challis Demonstration Planting Summary (1980-2013) Seeding Rate Evaluation for Low Precipitation Sites Plant Materials Publications The following documents were developed and reported in FY 2013. In order to condense the Annual Technical Report, these documents are not included but are available online: Technical Notes http://www.id.nrcs.usda.gov/programs/tech_ref.html#TechNotes Plant Guides http://www.id.nrcs.usda.gov/programs/tech_ref.html#PlantGuides Release Brochures http://www.id.nrcs.usda.gov/programs/tech_ref.html#Brochures Other documents http://plant-materials.nrcs.usda.gov/idpmc/publications.html Year 2013 Aberdeen Plant Materials Center Progress Report of Activities Intermountain Plant Notes newsletter (2014) Technical Note 57: Effects of Long-term Refrigerated Storage on Hardwood Willow Cuttings Technical Note 62: Challis, Idaho Demonstration Plantings Summary: 1980-2013 Technical Note 63: Evaluation of Perennial Grasses Used in Cross Wind Trap Strips in Eastern Idaho TN 65: Planning and Implementing a Seeding in Sage-Grouse Country Plant Guides – Palmer’s penstemon, thickleaf penstemon, Rydberg’s penstemon, meadow deathcamas, purple three-awn, shadscale saltbush, plains prickly pear, leafy spurge, Rocky Mountain penstemon, Dahurian wildrye Release Brochures – ‘Rush’ Intermediate wheatgrass Other Documents Idaho Specifications 342 Critical Area Planting Idaho Practice Standard 342 Critical Area Planting Hedgerow Planting How Does a Soil Function INTRODUCTION The Plant Materials Center at Aberdeen is part of a national plant materials program operated by the United States Department of Agriculture, Natural Resources Conservation Service. The purpose of the Plant Materials Center is to develop and communicate new technology for the use and management of plants to solve natural resource concerns. We also assemble, evaluate and release plant materials for conservation use and develop new techniques for establishment of conservation plants. The Aberdeen Plant Materials Center was established in 1939 and currently maintains 14 cultivars and 4 pre-variety (Selected Class) releases. The Aberdeen Plant Materials Center serves portions of Nevada, Utah, Oregon, Wyoming and Idaho. This document is a compilation of progress reports for activities by the Aberdeen Plant Materials Center during FY 2014. The following presentations were developed during FY 2014 and may be obtained by contacting the Aberdeen Plant Materials Center: Title: Establishing plants for weed suppression Presenter: D. Tilley Location: Shoshone, Idaho Description: Discussed selection and establishment of plant materials for reducing weed pressure. Wood River SCD weed workshop. Date presented: 2/14/2014 Title: NRCS policy on T&E species Presenter: D. Tilley Location: Boise, Idaho Description: Presented NRCS policy and PM resources to Idaho Rare Plant Committee. Date presented: 2/27/2014 Title: Update of PMC activities for GBNPP Presenter: D. TIlley Location: Boise, Idaho Description: Presented PMC work for Great Basin native plant project. Date presented: 3/18/2014 Title: Developing seed mixes for sage-grouse habitat Presenter: D. Tilley Location: Aberdeen, Idaho (webinar) Description: Webinar developed for SGI staff Date presented: 4/16/2014 Title: Species selection and mix calculations for sage-grouse habitat Presenter: D. Tilley, B. Brazee Location: Twin Falls, Idaho Description: Went over species appropriate for sage grouse habitat restoration and did classroom exercise developing seed mixes. Date presented: 5/8/2014 Title: 5th grade soil health field day Presenter: D. Tilley Location: Aberdeen, Idaho Description: 5th grade tour sponsored by SBSCD for 3 classes from Aberdeen Elementary. Taught soil health and conservation practices. Date presented: 5/22/2014 Title: American Falls Soil Health Demonstration Presenter: D. Tilley Description: 5th grade tour sponsored by SBSCD for classes from American Falls Elementary. Taught soil health and conservation practices. Date presented: 5/22/2014 Title: Plant Materials Committee meeting update Presenter: D. Tilley Location: Aberdeen, Idaho Description: Update on PMC/PMS activities givien to ID PM committee. Date presented: 6/10/2014 Title: Soil health and cover crop tour Presenter: D. Tilley Location: Aberdeen, Idaho Description: Gave soil health presentation and toured cover crop related plantings. Date presented: 6/12/2014 Title: Pollinator plantings Presenter: D. Tilley Location: Bellevue, Idaho Description: Toured Silver Spring Ranch with OSU entemology class. Discussed site preparation and installation of pollinator plantings. Date presented: 7/2/2014 Title: Soil health demonstration for Aberdeen District Library Presenter: D. Tilley Location: Aberdeen, Idaho Description: Gave soil health presentation and demonstration to youth. Date presented: 7/17/2014 Title: Plant materials for fire breaks Presenter: D. Tilley Location: Aberdeen, Idaho Description: Toured plots of Russian wildrye and forage kochia. Visited Coffee Point off-center site. Date presented: 9/3/2014 Copies of this document may be reproduced as needed. Please credit the Aberdeen Plant Materials Center when running a reprint. Some of the data is preliminary, and has not been confirmed through additional research. Therefore, if publishing data from this report, please contact the Team Leader at the Plant Materials Center. Note: Trade names are used solely to provide specific information and should not be considered a recommendation or endorsement by the Natural Resources Conservation Service. The U.S. Department of Agriculture (USDA) prohibits discrimination in all of its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex (including gender identity and expression), marital status, familial status, parental status, religion, sexual orientation, political beliefs, genetic information, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to: USDA, Assistant Secretary for Civil Rights, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, S.W., Stop 9410, Washington, DC 20250-9410. Or call toll-free at (866) 632-9992 (English) or (800) 877-8339 (TDD) or (866) 377-8642 (English Federal-relay) or (800) 845-6136 (Spanish Federal-relay). USDA is an equal opportunity provider and employer. FOUNDATION SEED PRODUCTION AT ABERDEEN PLANT MATERIALS CENTER A major responsibility of the Aberdeen Plant Materials Center is the production of Foundation quality seed of the plant releases from the Center. Foundation seed is made available to the University of Idaho Agricultural Experiment Station, Idaho Crop Improvement Association, Utah Crop Improvement Association, other plant materials centers and cooperating agencies. Seed is distributed as provided for by allocation and exchange or other written agreements. Foundation seed of recent releases may also be provided to soil conservation districts for registered or certified seed production under the District Seed Increase (DSI) program. The following table illustrates seed shipments from the Aberdeen Plant Materials Center for Fiscal year 2006 through 2014: TOTAL Cultivar 2006 2007 2008 2009 2010 2011 2012 2013 2014 POUNDS POUNDS PLS Anatone bluebunch wheatgrass 350 400 775 450 155 125 80 640 150 3125 Appar blue flax 955 150 150 200 120 175 150 200 175 2275 Bannock thickspike wheatgrass 900 240 150 0 0 100 850 1369 200 3809 Delar small burnet 490 100 1225 0 0 300 0 1200 200 3515 Ephraim crested wheatgrass 1300 300 500 605 0 0 300 350 0 3355 Goldar bluebunch wheatgrass 170 250 450 300 250 100 400 200 150 2270 Magnar basin wildrye 0 490 50 0 50 0 150 225 0 965 Maple Grove lewis flax 70 - - - 0 0 65 15 20 170 Nezpar Indian ricegrass 500 700 150 100 0 0 200 200 0 1850 P-27 Siberian wheatgrass 1/ 0 200 200 0 - - - - 0 400 Clearwater selection penstemon 0 0 0 1 4 20 0 25 0 50 Richfield selection penstemon 25 6 4 11 9 5 10 5 0 75 Paiute orchardgrass 75 200 50 300 0 0 0 0 0 625 Recovery western wheatgrass - - - 400 0 450 425 950 200 2425 Regar meadow brome 650 50 400 0 50 100 100 100 0 1450 Rush intermediate wheatgrass 300 500 0 0 0 0 50
Recommended publications
  • Canadian Food Inspection Agency Home > Plants > Plants with Novel Traits > Applicants > Directive 94­08 > Biology Documents > Triticum Turgidum Ssp
    Canadian Food Inspection Agency Home > Plants > Plants With Novel Traits > Applicants > Directive 94­08 > Biology Documents > Triticum turgidum ssp. durum The Biology of Share this page Triticum turgidum ssp. durum (Durum Wheat) This page is part of the Guidance Document Repository (GDR). Looking for related documents? Search for related documents in the Guidance Document Repository Biology Document BIO2006­07: A companion document to Directive 94­08 (Dir94­08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits Table of Contents Part A ­ General Information A1. Background A2. Scope Part B ­ The Biology of Triticum turgidum ssp. durum B1. General Description, Cultivation and Use as a Crop Plant B2. Brief Outlook at Breeding, Seed Production and Agronomic Practices for Durum Wheat B3. The Reproductive Biology of Triticum turgidum ssp. durum B4. The Centres of Origin of the Species B5. Cultivated Durum Wheat as a Volunteer Weed Part C ­ The Close Relatives of Triticum turgidum ssp. durum C1. Inter­Species / Genus Hybridization C2. Potential for Introgression of Genes from Triticum turgidum ssp. durum into Relatives C3. Occurrence of Related Species of Triticum turgidum ssp. durum in Canada C4. Summary of the Ecology of Relatives of Triticum turgidum ssp. durum Part D ­ Potential Interactions of Triticum turgidum ssp. durum with Other Life Forms During its Life Cycle Table 1. Examples of potential interactions of Triticum turgidum ssp. durum with other life forms during its life cycle in a natural environment Part E ­ Bibliography Part A ­ General Information A1. Background The Canadian Food Inspection Agency (CFIA) is responsible for regulating the field testing of crop plants with novel traits (PNTs) in Canada.
    [Show full text]
  • Allium Albanicum (Amaryllidaceae), a New Species from Balkans and Its
    A peer-reviewed open-access journal PhytoKeys 119: 117–136Allium (2019) albanicum (Amaryllidaceae), a new species from Balkans... 117 doi: 10.3897/phytokeys.119.30790 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Allium albanicum (Amaryllidaceae), a new species from Balkans and its relationships with A. meteoricum Heldr. & Hausskn. ex Halácsy Salvatore Brullo1, Cristian Brullo2, Salvatore Cambria1, Giampietro Giusso del Galdo1, Cristina Salmeri2 1 Department of Biological, Geological and Environmental Sciences, Catania University, Via A. Longo 19, 95125 Catania, Italy 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Palermo University, Via Archirafi 38, 90123 Palermo, Italy Corresponding author: Cristina Salmeri ([email protected]) Academic editor: L. Peruzzi | Received 26 October 2018 | Accepted 9 January 2019 | Published 11 April 2019 Citation: Brullo S, Brullo C, Cambria S, Giusso del Galdo G, Salmeri C (2019) Allium albanicum (Amaryllidaceae), a new species from Balkans and its relationships with A. meteoricum Heldr. & Hausskn. ex Halácsy. PhytoKeys 119: 117–136. https://doi.org/10.3897/phytokeys.119.30790 Abstract A new species, Allium albanicum, is described and illustrated from Albania (Balkan Peninsula). It grows on serpentines or limestone in open rocky stands with a scattered distribution, mainly in mountain loca- tions. Previously, the populations of this geophyte were attributed to A. meteoricum Heldr. & Hausskn. ex Halácsy, described from a few localities of North and Central Greece. These two species indeed show close relationships, chiefly regarding some features of the spathe valves, inflorescence and floral parts. They also share the same diploid chromosome number 2n =16 and similar karyotype, while seed testa micro- sculptures and leaf anatomy reveal remarkable differences.
    [Show full text]
  • Review with Checklist of Fabaceae in the Herbarium of Iraq Natural History Museum
    Review with checklist of Fabaceae in the herbarium of Iraq natural history museum Khansaa Rasheed Al-Joboury * Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq. GSC Biological and Pharmaceutical Sciences, 2021, 14(03), 137–142 Publication history: Received on 08 February 2021; revised on 10 March 2021; accepted on 12 March 2021 Article DOI: https://doi.org/10.30574/gscbps.2021.14.3.0074 Abstract This study aimed to make an inventory of leguminous plants for the purpose of identifying the plants that were collected over long periods and stored in the herbarium of Iraq Natural History Museum. It was found that the herbarium contains a large and varied number of plants from different parts of Iraq and in different and varied environments. It was collected and arranged according to a specific system in the herbarium to remain an important source for all graduate students and researchers to take advantage of these plants. Also, the flowering and fruiting periods of these plants in Iraq were recorded for different regions. Most of these plants begin to flower in the spring and thrive in fields and farms. Keywords: Fabaceae; Herbarium; Iraq; Natural; History; Museum 1. Introduction Leguminosae, Fabaceae or Papilionaceae, which was called as legume, pea, or bean Family, belong to the Order of Fabales [1]. The Fabaceae family have 727 genera also 19,325 species, which contents herbs, shrubs, trees, and climbers [2]. The distribution of fabaceae family was variety especially in cold mountainous regions for Europe, Asia and North America, It is also abundant in Central Asia and is characterized by great economic importance.
    [Show full text]
  • Plant Releases Forage and Range Research Laboratory - Logan, Utah
    PLANT RELEASES FORAGE AND RANGE RESEARCH LABORATORY - LOGAN, UTAH PLANTS FOR THE WEST Plant Materials Release Catalog Featuring Rangeland, Irrigated Pasture, and Turfgrass Germplasm FRRL Reader Instructions Catalog Navigation Table of Contents Using the Table of Contents/Index Rangeland READER INSTRUCTIONS 1. Click on plant of your choice. Recovery Page 1 (See page iii) P-7* Page 2 Discovery Page 3 FirstStrike Page 4 Using the Navigation Bar The navigation bar is located at the bottom Zoom In right of the document. Zoom Out Use the navigation bar to zoom, change the page, and return to the Table of Contents Next Page or Plant Index. Previous Page Press Ctrl+L to enter full screen mode. It may be easier to read the text in this mode. Table of Contents While viewing the document in full screen, only one page is visible at a time. To exit full Reader Instructions screen mode press Ctrl + L again. ? Using the Navigation Panel Adobe Reader features a navigation panel. To activate the Navigation Panel, press F4. A THE FORAGE AND RANGE RESEARCH LABORATORY: menu will appear on the left of your screen. Click the bookmark name or page image (depending on program preference) to navigate to the desired release documentation. Additional Resources Or visit our website To download a For further information about the Logan, Utah standard .pdf of the Forage and Range Research Laboratory. catalog i http://ars.usda.gov/npa/frrl/plantsforthewest 1-435-797-2249 FRRL : FRRL - Plants For The West PLANTS FOR THE WEST 1-435-797-2249 PLANTS FOR THE WEST ii THE FORAGE AND RANGE RESEARCH LABORATORY LOGAN, UTAH MISSION: FRRL GERMPLASM Provide improved plant materials and management alternatives for sustainable stewardship of rangelands, pastures, and turf in the western U.S.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Chapter 5 Phylogeny of Poaceae Based on Matk Gene Sequences
    Chapter 5 Phylogeny of Poaceae Based on matK Gene Sequences 5.1 Introduction Phylogenetic reconstruction in the Poaceae began early in this century with proposed evolutionary hypotheses based on assessment of existing knowledge of grasses (e.g., Bew, 1929; Hubbard 1948; Prat, 1960; Stebbins, 1956, 1982; Clayton, 1981; Tsvelev, 1983). Imperical approaches to phylogenetic reconstruction of the Poaceae followed those initial hypotheses, starting with cladistic analyses of morphological and anatomical characters (Kellogg and Campbell, 1987; Baum, 1987; Kellogg and Watson, 1993). More recently, molecular information has provided the basis for phylogenetic hypotheses in grasses at the subfamily and tribe levels (Table 5.1). These molecular studies were based on information from chloroplast DNA (cpDNA) restriction sites and DNA sequencing of the rbcL, ndhF, rps4, 18S and 26S ribosomal DNA (rDNA), phytochrome genes, and the ITS region (Hamby and Zimmer, 1988; Doebley et al., 1990; Davis and Soreng, 1993; Cummings, King, and Kellogg, 1994; Hsiao et al., 1994; Nadot, Bajon, and Lejeune, 1994; Barker, Linder, and Harley, 1995; Clark, Zhang, and Wendel, 1995; Duvall and Morton, 1996; Liang and Hilu, 1996; Mathews and Sharrock, 1996). Although these studies have refined our concept of grass evolution at the subfamily level and, to a certain degree, at the tribal level, major disagreements and questions remain to be addressed. Outstanding discrepancies at the subfamily level include: 1) Are the pooids, bambusoids senso lato, or herbaceous bamboos the
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Desirable Plant List
    Carpinteria-Summerland Fire Protection District High Fire Hazard Area Desirable Plant List Desirable Qualities for Landscape Plants within Carpinteria/Summerland High Fire Hazard areas • Ability to store water in leaves or • Ability to withstand drought. stems. • Prostrate or prone in form. • Produces limited dead and fine • Ability to withstand severe pruning. material. • Low levels of volatile oils or resins. • Extensive root systems for controlling erosion. • Ability to resprout after a fire. • High levels of salt or other compounds within its issues that can contribute to fire resistance. PLANT LIST LEGEND Geographical Area ......... ............. Water Needs..... ............. Evergreen/Deciduous C-Coastal ............. ............. H-High . ............. ............. E-Evergreen IV-Interior Valley ............. ............. M-Moderate....... ............. D-Deciduous D-Deserts ............. ............. L-Low... ............. ............. E/D-Partly or ............. ............. VL -Very Low .... ............. Summer Deciduous Comment Code 1 Not for use in coastal areas......... ............ 13 ........ Tends to be short lived. 2 Should not be used on steep slopes........ 14 ........ High fire resistance. 3 May be damaged by frost. .......... ............ 15 ........ Dead fronds or leaves need to be 4 Should be thinned bi-annually to ............ ............. removed to maintain fire safety. remove dead or unwanted growth. .......... 16 ........ Tolerant of heavy pruning. 5 Good for erosion control. ............. ...........
    [Show full text]
  • In-Silico Transcriptome Study of the Rice (Oryza Sativa)
    Pak. J. Bot., 53(4): 1515-1523, 2021. DOI: http://dx.doi.org/10.30848/PJB2021-4(16) FUNCTIONAL CHARACTERIZATION OF A POTENT ANTIMICROBIAL AND INSECTICIDAL CHITIN BINDING PROTEIN FROM SEEDS OF IBERIS UMBELLATA L. AHSAN SAEED1, ZAHRA RAFIQ1, QAMAR SAEED2, BINISH KHALIQ3, ANWAR ULLAH4, SOHAIB MEHMOOD1, ZAHID ALI5, MUHAMMAD YASIN ASHRAF3 AND AHMED AKREM1* 1Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan 2Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan 3Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan 4Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan 5Plant Biotechnology & Molecular Pharming Lab, Department of Biosciences, COMSATS University Islamabad (CUI) Islamabad, Pakistan *Corresponding author at: [email protected]; Tel: +923124659831. Abstract Chitin-binding proteins belong to the 2S albumin family and are helped in the plant defense, especially against fungal pathogens. A chitin-binding protein, Iu-CBP, has been identified and characterized from Iberis umbellata seeds. The purified form of this protein showed approximately an 11 kDa band under non-reduced condition on SDS-PAGE. LC-MS/MS provided a single fragment of amino acid sequence of 23 residues (QAVQSAQQQQGQVGPQQVGHMYR). UniProtKB database showed 100% sequence similarity with Moringa oleifera chitin-binding protein (Mo-CBP3-1) which classically contained two proteolytically matured α-helical chains linked by disulfide bonds along surfaced Arginines responsible for antimicrobial activity. Iu-CBP showed antimicrobial activity against bacterial pathogens i.e Bacillus subtilis, Xanthomonas oryzae, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa at concentrations of 5.0 and 10.0 µg per disc. Similarly, a 20 µg/disc dose of Iu-CBP inhibited the mycelial growth of Aspergillus flavus.
    [Show full text]
  • Development and Testing of Cool-Season Grass Species, Varieties and Hybrids for Biomass Feedstock Production in Western North America
    agronomy Article Development and Testing of Cool-Season Grass Species, Varieties and Hybrids for Biomass Feedstock Production in Western North America Steven R. Larson 1,*, Calvin H. Pearson 2, Kevin B. Jensen 1, Thomas A. Jones 1, Ivan W. Mott 1, Matthew D. Robbins 1, Jack E. Staub 1 and Blair L. Waldron 1 1 USDA-ARS, Forage and Range Research, Utah State University, Logan, UT 84322, USA; [email protected] (K.B.J.); [email protected] (T.A.J.); [email protected] (I.W.M.); [email protected] (M.D.R.); [email protected] (J.E.S.); [email protected] (B.L.W.) 2 Agriculture Experiment Station, Department of Soil and Crop Sciences, Colorado State University, Fruita, CO 81521, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-436-5-797-1703 Academic Editors: John W. Forster and Smith Kevin F. Smith Received: 29 September 2016; Accepted: 14 December 2016; Published: 1 January 2017 Abstract: Breeding of native cool-season grasses has the potential to improve forage production and expand the range of bioenergy feedstocks throughout western North America. Basin wildrye (Leymus cinereus) and creeping wildrye (Leymus triticoides) rank among the tallest and most rhizomatous grasses of this region, respectively. The objectives of this study were to develop interspecific creeping wildrye (CWR) × basin wildrye (BWR) hybrids and evaluate their biomass yield relative to tetraploid ‘Trailhead’, octoploid ‘Magnar’ and interploidy-hybrid ‘Continental’ BWR cultivars in comparison with other perennial grasses across diverse single-harvest dryland range sites and a two-harvest irrigated production system.
    [Show full text]
  • Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S
    Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S. Fish and Wildlife Service G. Leppig and A. Pickart and California Department of Fish Game Release 4.0 June 2014* www.fws.gov/refuge/humboldt_bay/ Habitat- Habitat - Occurs on Species Status Occurs within Synonyms Common name specific broad Lanphere- Jepson Manual (2012) (see codes at end) refuge (see codes at end) (see codes at end) Ma-le'l Units UD PW EW Adoxaceae Sambucus racemosa L. red elderberry RF, CDF, FS X X N X X Aizoaceae Carpobrotus chilensis (Molina) sea fig DM X E X X N.E. Br. Carpobrotus edulis ( L.) N.E. Br. Iceplant DM X E, I X Alismataceae lanceleaf water Alisma lanceolatum With. FM X E plantain northern water Alisma triviale Pursh FM X N plantain Alliaceae three-cornered Allium triquetrum L. FS, FM, DM X X E leek Allium unifolium Kellogg one-leaf onion CDF X N X X Amaryllidaceae Amaryllis belladonna L. belladonna lily DS, AW X X E Narcissus pseudonarcissus L. daffodil AW, DS, SW X X E X Anacardiaceae Toxicodendron diversilobum Torrey poison oak CDF, RF X X N X X & A. Gray (E. Greene) Apiaceae Angelica lucida L. seacoast angelica BM X X N, C X X Anthriscus caucalis M. Bieb bur chevril DM X E Cicuta douglasii (DC.) J. Coulter & western water FM X N Rose hemlock Conium maculatum L. poison hemlock RF, AW X I X Daucus carota L. Queen Anne's lace AW, DM X X I X American wild Daucus pusillus Michaux DM, SW X X N X X carrot Foeniculum vulgare Miller sweet fennel AW, FM, SW X X I X Glehnia littoralis (A.
    [Show full text]
  • Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales
    1 Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales. Annals of the Entomological Society of America 112: 318-329. 3 https://doi.org/10.1093/aesa/say043 4 5 6 Trap Crops and Insectary Plants in the Order Brassicales 7 Francisco Rubén Badenes-Perez 8 Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 9 Madrid, Spain 10 E-mail: [email protected] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ABSTRACT This paper reviews the most important cases of trap crops and insectary 26 plants in the order Brassicales. Most trap crops in the order Brassicales target insects that 27 are specialist in plants belonging to this order, such as the diamondback moth, Plutella 28 xylostella L. (Lepidoptera: Plutellidae), the pollen beetle, Meligethes aeneus Fabricius 29 (Coleoptera: Nitidulidae), and flea beetles inthe genera Phyllotreta Psylliodes 30 (Coleoptera: Chrysomelidae). In most cases, the mode of action of these trap crops is the 31 preferential attraction of the insect pest for the trap crop located next to the main crop. 32 With one exception, these trap crops in the order Brassicales have been used with 33 brassicaceous crops. Insectary plants in the order Brassicales attract a wide variety of 34 natural enemies, but most studies focus on their effect on aphidofagous hoverflies and 35 parasitoids. The parasitoids benefiting from insectary plants in the order Brassicales 36 target insects pests ranging from specialists, such as P. xylostella, to highly polyfagous, 37 such as the stink bugs Euschistus conspersus Uhler and Thyanta pallidovirens Stål 38 (Hemiptera: Pentatomidae).
    [Show full text]