bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447224; this version posted June 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Predicted Coronavirus Nsp5 Protease Cleavage Sites in the 2 Human Proteome: A Resource for SARS-CoV-2 Research 3 Benjamin M. Scott1,2*, Vincent Lacasse3, Ditte G. Blom4, Peter D. Tonner5, Nikolaj S. Blom6 4 1 Associate, Biosystems and Biomaterials Division, National Institute of Standards and Technology, 5 Gaithersburg, Maryland, USA. 6 2 Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA. 7 3 Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, 8 Quebec, Canada 9 4 Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, 10 Denmark. 11 5 Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA 12 6 Department of Bioengineering, Kongens Lyngby, Technical University of Denmark 13 14 *Corresponding author,
[email protected] 15 16 BMS current affiliation: Concordia University, Centre for Applied Synthetic Biology, Montreal, Quebec, Canada 17 18 19 Abstract 20 Background: The coronavirus nonstructural protein 5 (Nsp5) is a cysteine protease required for 21 processing the viral polyprotein and is therefore crucial for viral replication. Nsp5 from several 22 coronaviruses have also been found to cleave host proteins, disrupting molecular pathways 23 involved in innate immunity. Nsp5 from the recently emerged SARS-CoV-2 virus interacts with 24 and can cleave human proteins, which may be relevant to the pathogenesis of COVID-19.