Förfs 748/2020

Total Page:16

File Type:pdf, Size:1020Kb

Förfs 748/2020 FINLANDS FÖRFATTNINGSSAMLING MuuMnrovvvvom klassificering asia av biologiska agenser Utgiven i Helsingfors den 4 november 2020 748/2020 Social- och hälsovårdsministeriets förordning om klassificering av biologiska agenser I enlighet med social- och hälsovårdsministeriets beslut föreskrivs med stöd av 40 § 3 mom. i arbetarskyddslagen (738/2002): 1§ I bilagan till denna förordning finns bestämmelser om klassificering av biologiska agenser i grupper som avses i 3 § i statsrådets förordning om skydd för arbetstagare mot risker som orsakas av biologiska agenser (933/2017) samt om andra sådana egenskaper hos biologiska agenser som befunnits skadliga. 2§ Denna förordning träder i kraft den 15 november 2020. Genom denna förordning upphävs social- och hälsovårdsministeriets förordning om klassificering av biologiska agenser (921/2010). Helsingfors den 29 oktober 2020 Social- och hälsovårdsminister Aino-Kaisa Pekonen Specialsakkunnig Jenny Rintala Kommissionens direktiv (EU) 2019/1833 (32019L1833); EUT L 279, 31.10.2019, s. 54 Kommissionens direktiv (EU) 2020/739 (32020L0739); EUT L 175, 4.6.2020, s. 11 1 748/2020 Bilaga FÖRTECKNING ÖVER KLASSIFICERINGEN AV BIOLOGISKA AGENSER OCH DERAS SKADLIGA EGEN- SKAPER 1. Inledning 1. I förteckningen ingår sådana biologiska agenser som man vet smittar människor. Agensernas eventuella toxiska eller allergiska effekter anges i förteckningen. Djur- och växtpatogener som inte påverkar människan ingår inte i förteckningen. Genetiskt modifierade mikroorganismer beaktades inte när förteckningen upprättades. 2. Klassificeringen av biologiska agenser baserar sig på de biologiska agensernas effekt på friska arbetstagare. Hänsyn har inte tagits till effekterna på de arbetstagare vars mottaglighet kan påverkas av någon annan omständighet, såsom redan existerande sjukdom, medicinering, nedsatt immunförsvar, graviditet eller amning. 3. Biologiska agenser som inte har klassificerats i någon av grupperna 2–4 i förteckningen ska inte antas vara klassificerade i grupp 1. För agenser där man vet att mer än en art är sjukdomsframkallande för människan inne- fattar förteckningen de arter som man vet oftast orsakar sjukdomar. Även andra arter av samma släkte kan påverka hälsan. När ett helt släkte anges i förteckningen över biologiska agenser är det underförstått att de arter och stammar som man vet att inte är sjukdomsframkallande inte ingår i klassi- ficeringen. 4. Alla virus som redan har isolerats hos människor och som inte har bedömts och införts i denna förteckning ska klassificeras i grupp 2 eller högre. 5. Sådana biologiska agenser som klassificerats i grupp 3 och som anges i förteckningen med dubbla asterisker (**), kan utgöra en begränsad infektionsrisk för arbetstagare där- för att de normalt inte är smittosamma luftvägen. 6. De krav på skyddsåtgärder som följer av klassificeringen av parasiter gäller bara för de stadier i parasitens livscykel då den är smittsam för människor på arbetsplatsen. 7. Förteckningen anger också särskilt när de biologiska agenserna kan förorsaka toxiska eller allergiska effekter, om ett verksamt vaccin är tillgängligt samt om exponering för den biologiska agensen kan leda till sådan smitta att en förteckning över de exponerade arbetstagarna ska bevaras i 40 år. Med bokstavsbeteckningar anges dessutom nya agenser (n) och ändringar (ä) jämfört med social- och hälsovårdsministeriets förordning 921/2010. 2 748/2020 Dessa omständigheter anges i förteckningen med följande bokstäver: A: Allergiska effekter möjliga E: Exponering kan leda till sådan smitta att en förteckning över exponerade arbetsta- gare ska bevaras i 40 år efter den senast kända exponeringen T: Toxinproduktion V: Ett effektivt vaccin är tillgängligt och registrerat inom EU n: Ny agens ä: Ändring 2. Bakterier och liknande organismer Anm.: Med noteringen ”spp.” i samband med biologiska agenser i förteckningen avses andra arter som hör till släktet och som inte har tagits upp separat men som man vet är sjukdomsframkallande hos människor. Se ytterligare information i punkt 3 i inledningen. Biologisk agens Klassifi- Anmärkningar cering Acinetobacter spp. 2 n Actinomadura madurae 2 Actinomadura pelletieri 2 Actinomyces gerencseriae 2 Actinomyces israelii 2 Actinomyces spp. 2 Aggregatibacter actinomycetemcomitans (Actinobacillus 2 actinomycetemcomitans) Alcaligenes spp. 2 n Anaplasma spp. 2 n Arcanobacterium haemolyticum (Corynebacterium haemo- 2 lyticum) Arcobacter butzleri 2 n Achromobacter spp. 3 n Bacillus anthracis 3 T, ä Bacillus cereus 2 T, n Bacillus cereus biovar anthracis 3 T, n Bacteroides fragilis 2 Bacteroides spp. 2 Bartonella bacilliformis 2 Bartonella quintana (Rochalimaea quintana) 2 Bartonella (Rochalimaea) spp. 2 Bordetella bronchiseptica 2 Bordetella parapertussis 2 Bordetella pertussis 2 T, V, ä Bordetella spp. 2 n Borrelia burgdorferi 2 Borrelia duttonii 2 Borrelia recurrentis 2 3 748/2020 Borrelia spp. 2 Brachyspira spp. 2 Brucella abortus 3 Brucella canis 3 Brucella inopinata 3 n Brucella melitensis 3 Brucella pinnipedialis 3 n Brucella spp. 3 n Brucella suis 3 Burkholderia cepacia 2 Burkholderia mallei (Pseudomonas mallei) 3 Burkholderia pseudomallei (Pseudomonas pseudomallei) 3 E, ä Campylobacter fetus subsp. fetus 2 Campylobacter fetus subsp. venerealis 2 n Campylobacter jejuni subsp. doylei 2 n Campylobacter jejuni subsp. jejuni 2 Campylobacter spp. 2 Cardiobacterium hominis 2 Cardiobacterium valvarum 2 n Chlamydia abortus (Chlamydophila abortus) 2 n Chlamydia caviae (Chlamydophila caviae) 2 n Chlamydia felis (Chlamydophila felis) 2 n Chlamydia pneumoniae (Chlamydophila pneumoniae) 2 Chlamydia psittaci (Chlamydophila psittaci) (fågelassocierade 3 stammar) Chlamydia psittaci (Chlamydophila psittaci) (andra stammar) 2 Chlamydia trachomatis (Chlamydophila trachomatis) 2 Citrobacter spp. 2 Clostridium botulinum 2 T Clostridium difficile (Clostridioides difficile) 2 T, n Clostridium perfringens 2 T, ä Clostridium tetani 2 T, V Clostridium spp. 2 Corynebacterium diphtheriae 2 T, V Corynebacterium minutissimum 2 Corynebacterium pseudotuberculosis 2 T, ä Corynebacterium ulcerans 2 T, n Corynebacterium spp. 2 Coxiella burnetii 3 Edwardsiella tarda 2 Ehrlichia spp. 2 Eikenella corrodens 2 Elizabethkingia meningoseptica (Flavobacterium 2 n meningosepticum) Enterobacter aerogenes (Klebsiella mobilis) 2 Enterobacter cloacae subsp. cloacae (Enterobacter cloacae) 2 4 748/2020 Enterobacter spp. 2 Enterococcus spp. 2 Erysipelothrix rhusiopathiae 2 Escherichia coli 2 Escherichia coli, verocytotoxinproducerande stammar (t.ex. 3 (**) T O157:H7 eller O103) Fluoribacter bozemanae (Legionella bozemanae) 2 Francisella hispaniensis 2 n Francisella tularensis subsp. holarctica 2 Francisella tularensis subsp. mediasiatica 2 n Francisella tularensis subsp. novicida 2 n Francisella tularensis subsp. tularensis 3 Fusobacterium necrophorum subsp. funduliforme 2 n Fusobacterium necrophorum subsp. necrophorum 2 Fusobacterium spp. 2 Gardnerella vaginalis 2 Haemophilus ducreyi 2 Haemophilus influenzae 2 V, ä Haemophilus spp. 2 Helicobacter pylori 2 Helicobacter spp. 2 n Klebsiella oxytoca 2 Klebsiella pneumoniae subsp. ozaenae 2 n Klebsiella pneumoniae subsp. pneumoniae 2 Klebsiella pneumoniae subsp. rhinoscleromatis 2 n Klebsiella spp. 2 Legionella pneumophila subsp. fraseri 2 n Legionella pneumophila subsp. pascullei 2 n Legionella pneumophila subsp. pneumophila 2 Legionella spp. 2 Leptospira interrogans (alla serotyper) 2 Leptospira spp. 2 n Listeria monocytogenes 2 Listeria ivanovii subsp. ivanovii 2 Listeria invanovii subsp. londoniensis 2 n Moraxella catarrhalis 2 Morganella morganii subsp. morganii (Proteus morganii) 2 Morganella morganii subsp. sibonii 2 n Mycobacterium abscessus subsp. abscessus 2 Mycobacterium africanum 3 V Mycobacterium avium subsp. avium (Mycobacterium avium) 2 Mycobacterium avium subsp. paratuberculosis (Mycobacterium 2 paratuberculosis) Mycobacterium avium subsp. silvaticum 2 n Mycobacterium bohemicum 2 Mycobacterium bovis (med undantag för BCG-stammen) 3 V 5 748/2020 Mycobacterium caprae (Mycobacterium tuberculosis subsp. 3 n caprae) Mycobacterium celatum 2 Mycobacterium chelonae 2 Mycobacterium chimaera 2 n Mycobacterium fortuitum 2 Mycobacterium intracellulare 2 n Mycobacterium kansasii 2 Mycobacterium lentiflavum 2 Mycobacterium leprae 3 Mycobacterium malmoense 2 Mycobacterium marinum 2 Mycobacterium microti 3 (**) Mycobacterium pinnipedii 3 n Mycobacterium scrofulaceum 2 Mycobacterium simiae 2 Mycobacterium szulgai 2 Mycobacterium tuberculosis 3 V Mycobacterium ulcerans 3 (**) Mycobacterium xenopi 2 Mycoplasma caviae 2 Mycoplasma hominis 2 Mycoplasma pneumoniae 2 Mycoplasma spp. 2 n Neisseria gonorrhoeae 2 Neisseria meningitidis 2 V Neorickettsia sennetsu (Rickettsia sennetsu, Ehrlichia sennetsu) 2 Nocardia asteroides 2 Nocardia brasiliensis 2 Nocardia farcinica 2 Nocardia nova 2 Nocardia otitidiscaviarum 2 Nocardia spp. 2 n Orientia tsutsugamushi (Rickettsia tsutsugamushi) 3 Pasteurella multocida subsp. gallicida (Pasteurella gallicida) 2 n Pasteurella multocida subsp. multocida 2 Pasteurella multocida subsp. septica 2 n Pasteurella spp. 2 Peptostreptococcus anaerobius 2 Plesiomonas shigelloides 2 Porphyromonas spp. 2 Prevotella spp. 2 Proteus mirabilis 2 Proteus penneri 2 Proteus vulgaris 2 Providencia alcalifaciens (Proteus inconstans) 2 6 748/2020 Providencia rettgeri (Proteus rettgeri) 2 Providencia spp. 2 Pseudomonas aeruginosa 2 T, ä Rhodococcus hoagii (Corynebacterium equi, Rhoducoccus equi) 2 Rickettsia africae 3 n Rickettsia akari 3 (**) Rickettsia australis 3 n Rickettsia canadensis
Recommended publications
  • Entwicklung Einer Software Zur Identifizierung Neuartiger Und
    Entwicklung einer Software zur Identifizierung neuartiger und bekannter Infektionserreger in klinischen Proben Dissertation zur Erlangung des Doktorgrades an der Fakult¨at fur¨ Mathematik, Informatik und Naturwissenschaften Fachbereich Biologie der Universit¨at Hamburg vorgelegt von Malik Alawi Hamburg, 2020 Vorsitzender der Prufungskommission¨ Dr. PD Andreas Pommerening-R¨oser Gutachter Professor Dr. Adam Grundhoff Professor Dr. Stefan Kurtz Datum der Disputation 30. April 2021 Abstract Sequencing of diagnostic samples is widely considered a key technology that may fun- damentally improve infectious disease diagnostics. The approach can not only identify pathogens already known to cause a specific disease, but may also detect pathogens that have not been previously attributed to this disease, as well as completely new, previously unknown pathogens. Therefore, it may significantly increase the level of preparedness for future outbreaks of emerging pathogens. This study describes the development and application of methods for the identification of pathogenic agents in diagnostic samples. The methods have been successfully applied multiple times under clinical conditions. The corresponding results have been published within the scope of this thesis. Finally, the methods were made available to the scientific community as an open source bioinformatics tool. The novel software was validated by conventional diagnostic methods and it was compared to established analysis pipelines using authentic clinical samples. It is able to identify pathogens from different diagnostic entities and often classifies viral agents down to strain level. Furthermore, the method is capable of assembling complete viral genomes, even from samples containing multiple closely related viral strains of the same viral family. In addition to an improved method for taxonomic classification, the software offers functionality which is not present in established analysis pipelines.
    [Show full text]
  • Using Cell Lines to Study Factors Affecting Transmission of Fish Viruses
    Using cell lines to study factors affecting transmission of fish viruses by Phuc Hoang Pham A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Biology Waterloo, Ontario, Canada, 2014 ©Phuc Hoang Pham 2014 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT Factors that can influence the transmission of aquatic viruses in fish production facilities and natural environment are the immune defense of host species, the ability of viruses to infect host cells, and the environmental persistence of viruses. In this thesis, fish cell lines were used to study different aspects of these factors. Five viruses were used in this study: viral hemorrhagic septicemia virus (VHSV) from the Rhabdoviridae family; chum salmon reovirus (CSV) from the Reoviridae family; infectious pancreatic necrosis virus (IPNV) from the Birnaviridae family; and grouper iridovirus (GIV) and frog virus-3 (FV3) from the Iridoviridae family. The first factor affecting the transmission of fish viruses examined in this thesis is the immune defense of host species. In this work, infections of marine VHSV-IVa and freshwater VHSV-IVb were studied in two rainbow trout cell lines, RTgill-W1 from the gill epithelium, and RTS11 from spleen macrophages. RTgill-W1 produced infectious progeny of both VHSV-IVa and -IVb. However, VHSV-IVa was more infectious than IVb toward RTgill-W1: IVa caused cytopathic effects (CPE) at a lower viral titre, elicited CPE earlier, and yielded higher titres.
    [Show full text]
  • An Open Source Bioinformatics Tool for Fast, Systematic and Cohort Based
    www.nature.com/scientificreports OPEN DAMIAN: an open source bioinformatics tool for fast, systematic and cohort based analysis of microorganisms in diagnostic samples Malik Alawi 1,2, Lia Burkhardt1, Daniela Indenbirken1, Kerstin Reumann1, Maximilian Christopeit3, Nicolaus Kröger3, Marc Lütgehetmann4, Martin Aepfelbacher4, Nicole Fischer4,5* & Adam Grundhof 1,5* We describe DAMIAN, an open source bioinformatics tool designed for the identifcation of pathogenic microorganisms in diagnostic samples. By using authentic clinical samples and comparing our results to those from established analysis pipelines as well as conventional diagnostics, we demonstrate that DAMIAN rapidly identifes pathogens in diferent diagnostic entities, and accurately classifes viral agents down to the strain level. We furthermore show that DAMIAN is able to assemble full-length viral genomes even in samples co-infected with multiple virus strains, an ability which is of considerable advantage for the investigation of outbreak scenarios. While DAMIAN, similar to other pipelines, analyzes single samples to perform classifcation of sequences according to their likely taxonomic origin, it also includes a tool for cohort-based analysis. This tool uses cross-sample comparisons to identify sequence signatures that are frequently present in a sample group of interest (e.g., a disease- associated cohort), but occur less frequently in control cohorts. As this approach does not require homology searches in databases, it principally allows the identifcation of not only known, but also completely novel pathogens. Using samples from a meningitis outbreak, we demonstrate the feasibility of this approach in identifying enterovirus as the causative agent. Nucleic acid based detection of pathogens has widely replaced culture based laboratory methods for the identif- cation of putative pathogens in samples from patients with infectious diseases1,2.
    [Show full text]
  • A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies
    www.nature.com/scientificreports OPEN Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Received: 19 April 2017 Accepted: 25 May 2017 Infesting Previously Unknown Published: xx xx xxxx Pteropodid Bats in Uganda Tony L. Goldberg 1,2,3, Andrew J. Bennett1, Robert Kityo3, Jens H. Kuhn4 & Colin A. Chapman3,5 Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next- generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet- to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites. Bats (order Chiroptera) represent the second largest order of mammals after rodents (order Rodentia).
    [Show full text]
  • JOURNAL of VIROLOGY Volume 18 Contents for May Number 2
    JOURNAL OF VIROLOGY Volume 18 Contents for May Number 2 Animal Viruses Isolation and Properties of the Replicase of Encephalomyocarditis Virus. A. TRAUB,* B. DISKIN, H. ROSENBERG, AND E. KALMAR ...... ............... 375 Synthesis and Integration of Viral DNA in Chicken Cells at Different Times After Infection with Various Multiplicities of Avian Oncornavirus. ALLAN T. KHOURY* AND HIDESABURO HANAFUSA ........ .......................... 383 RNA Metabolism of Murine Leukemia Virus. III. Identification and Quantitation of Endogenous Virus-Specific mRNA in the Uninfected BALB/c Cell Line JLS-V9. HUNG FAN AND NIKOLAUS MUELLER-LANTZSCH* ..... ............ 401 Endogenous Ecotropic Mouse Type C Viruses Deficient in Replication and Produc- tion of XC Plaques. ULF W RAPP AND ROBERT C. NoWINSKI* ..... ....... 411 Further Characterization of the Friend Murine Leukemia Virus Reverse Tran- scriptase-RNase H Complex. KARIN MOELLING ...... ................... 418 State of the Viral DNA in Rat Cells Transformed by Polyoma Virus. I. Virus Res- cue and the Presence of Nonintegrated Viral DNA Molecules. ISHWARI PRASAD, DIMITRIS ZOUZIAS, AND CLAUDIO BASIUCO* ...... ................ 436 Inhibition of Infectious Rous Sarcoma Virus Production by a Rifamycin Deriva- tive. CHARLES SZABO,* MINA J. BISSELL, AND MELVIN CALVIN ..... ...... 445 Synthesis ofthe Adenovirus-Coded DNA Binding Protein in Infected Cells. ZVEE GILEAD,* KINJI SUGUWARA, G. SHANMUGAM, AND MAURICE GREEN ....... 454 Intracellular Distribution and Sedimentation Properties of Virus-Specific RNA in Two Clones of BHK Cells Transformed by Polyoma Virus. IAN H. MAX- WELL .............................................................. 461 Inherited Resistance to N- and B-Tropic Murine Leukemia Viruses In Vitro: Titration Patterns in Strains SIM and SIM.R Congenic at the Fv-1 Locus. VERA SCHUH, MARTIN E. BLACKSTEIN, AND ARTHUR A.
    [Show full text]
  • TNF Decoy Receptors Encoded by Poxviruses
    pathogens Review TNF Decoy Receptors Encoded by Poxviruses Francisco Javier Alvarez-de Miranda † , Isabel Alonso-Sánchez † , Antonio Alcamí and Bruno Hernaez * Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; [email protected] (F.J.A.-d.M.); [email protected] (I.A.-S.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +34-911-196-4590 † These authors contributed equally. Abstract: Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF- based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules. Keywords: poxvirus; immune evasion; tumour necrosis factor; tumour necrosis factor receptors; lymphotoxin; inflammation; cytokines; secreted decoy receptors; vaccinia virus; ectromelia virus; cowpox virus Citation: Alvarez-de Miranda, F.J.; Alonso-Sánchez, I.; Alcamí, A.; 1. TNF Biology Hernaez, B. TNF Decoy Receptors TNF is a potent pro-inflammatory cytokine with a broad range of biological effects, Encoded by Poxviruses. Pathogens ranging from the activation of inflammatory gene programs to cell differentiation or 2021, 10, 1065.
    [Show full text]
  • Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
    研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS.
    [Show full text]
  • Detection and Genetic Characterization of Puumala
    Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica Séverine Murri, Sarah Madrières, Caroline Tatard, Sylvain Piry, Laure Benoit, Anne Loiseau, Julien Pradel, Emmanuelle Artige, Philippe Audiot, Nicolas Leménager, et al. To cite this version: Séverine Murri, Sarah Madrières, Caroline Tatard, Sylvain Piry, Laure Benoit, et al.. Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica. Pathogens, MDPI, 2020, 9 (9), pp.721. 10.3390/pathogens9090721. hal-03275200 HAL Id: hal-03275200 https://hal.inrae.fr/hal-03275200 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License pathogens Article Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica Séverine Murri 1, Sarah Madrières 1,2, Caroline Tatard 2, Sylvain Piry 2 , Laure Benoit
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • Geographical Distribution and Genetic Diversity of Bank Vole
    Edinburgh Research Explorer Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe Citation for published version: Schneider, J, Hoffmann, B, Fevola, C, Schmidt, ML, Imholt, C, Fischer, S, Ecke, F, Hörnfeldt, B, Magnusson, M, Olsson, GE, Rizzoli, A, Tagliapietra, V, Chiari, M, Reusken, C, Bužan, E, Kazimirova, M, Stanko, M, White, TA, Reil, D, Obiegala, A, Meredith, A, Drexler, JF, Essbauer, S, Henttonen, H, Jacob, J, Hauffe, HC, Beer, M, Heckel, G & Ulrich, RG 2021, 'Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe', Viruses, vol. 13, no. 7. https://doi.org/10.3390/v13071258 Digital Object Identifier (DOI): 10.3390/v13071258 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Viruses General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 viruses Article Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe Julia Schneider 1,2,*,† , Bernd Hoffmann 3 , Cristina Fevola 4,5 , Marie Luisa Schmidt 1,2,†, Christian Imholt 6, Stefan Fischer 1, Frauke Ecke 7, Birger Hörnfeldt 7, Magnus Magnusson 7, Gert E.
    [Show full text]
  • Downloaded Via Ensembl While Using HISAT2
    viruses Article Interactions of Viral Proteins from Pathogenic and Low or Non-Pathogenic Orthohantaviruses with Human Type I Interferon Signaling Giulia Gallo 1,2, Grégory Caignard 3, Karine Badonnel 4, Guillaume Chevreux 5, Samuel Terrier 5, Agnieszka Szemiel 6, Gleyder Roman-Sosa 7,†, Florian Binder 8, Quan Gu 6, Ana Da Silva Filipe 6, Rainer G. Ulrich 8 , Alain Kohl 6, Damien Vitour 3 , Noël Tordo 1,9 and Myriam Ermonval 1,* 1 Unité des Stratégies Antivirales, Institut Pasteur, 75015 Paris, France; [email protected] (G.G.); [email protected] (N.T.) 2 Ecole Doctorale Complexité du Vivant, Sorbonne Université, 75006 Paris, France 3 UMR 1161 Virologie, Anses-INRAE-EnvA, 94700 Maisons-Alfort, France; [email protected] (G.C.); [email protected] (D.V.) 4 BREED, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; [email protected] 5 Institut Jacques Monod, CNRS UMR 7592, ProteoSeine Mass Spectrometry Plateform, Université de Paris, 75013 Paris, France; [email protected] (G.C.); [email protected] (S.T.) 6 MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; [email protected] (A.S.); [email protected] (Q.G.); ana.dasilvafi[email protected] (A.D.S.F.); [email protected] (A.K.) 7 Unité de Biologie Structurale, Institut Pasteur, 75015 Paris, France; [email protected] 8 Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; binderfl[email protected] (F.B.); rainer.ulrich@fli.de (R.G.U.) Citation: Gallo, G.; Caignard, G.; 9 Institut Pasteur de Guinée, BP 4416 Conakry, Guinea Badonnel, K.; Chevreux, G.; Terrier, S.; * Correspondence: [email protected] Szemiel, A.; Roman-Sosa, G.; † Current address: Institut Für Virologie, Justus-Liebig-Universität, 35390 Giessen, Germany.
    [Show full text]
  • Puumala Virus Infection in Family, Switzerland
    RESEARCH LETTERS 7. Zehnder AM, Hawkins MG, Koski MA, Lifland B, Byrne BA, World hantaviruses ranges from 1%–10% for Do- Swanson AA, et al. Burkholderia pseudomallei isolates in 2 pet brava-Belgrade and Hantaan orthohantaviruses to iguanas, California, USA. Emerg Infect Dis. 2014;20:304–6. https://doi.org/10.3201/eid2002.131314 <1% for PUUV. Infection is transmitted by direct 8. Elschner MC, Hnizdo J, Stamm I, El-Adawy H, Mertens K, inhalation of virion-containing aerosols from ro- Melzer F. Isolation of the highly pathogenic and zoonotic dent urine and feces. PUUV causes nephropathia agent Burkholderia pseudomallei from a pet green iguana in epidemica, a limited form of hemorrhagic fever Prague, Czech Republic. BMC Vet Res. 2014;10:283. https://doi.org/10.1186/s12917-014-0283-7 with renal syndrome (1). In Russia, 6,000–8,000 cases of hemorrhagic fever with renal syndrome Address for correspondence: Jay E. Gee, Centers for Disease are reported annually. Most cases occur in Western Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Russia and are caused by PUUV and Dobrava-Bel- Atlanta, GA 30329-4027, USA; email: [email protected] grade orthohantaviruses (2). Asthenia, fever, chills, diffuse myalgia, and lum- bar pain developed in a man 45 years of age 4 days after he returned to Switzerland from Samara, his hometown in central Russia (Appendix, https:// wwwnc.cdc.gov/EID/article/27/2/20-3770-App1. pdf). Four days later, he sought treatment at the Ge- neva University Hospitals (Geneva, Switzerland) for septic shock with disseminated intravascular coagu- lation and kidney and liver failure.
    [Show full text]